Loading…
Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor
This study involves the development of novel mesoporous Zr-MCM-48 photocatalyst impregnated with Cu-porphyrin (CuTPP) having Si/Zr ratio of 100, 50 and 25. The synthesized materials were applied as hybrid photocatalyst affording mid-gap energy states and Zi 3+ sites for reduction of CO 2 into methan...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2021-09, Vol.32 (17), p.22060-22075 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study involves the development of novel mesoporous Zr-MCM-48 photocatalyst impregnated with Cu-porphyrin (CuTPP) having Si/Zr ratio of 100, 50 and 25. The synthesized materials were applied as hybrid photocatalyst affording mid-gap energy states and Zi
3+
sites for reduction of CO
2
into methanol selectively using UV–Visible light treatment. Interestingly, Zr-MCM-48 displayed significant photocatalytic reduction ability under UV–Vis wavelength. The bare Zr-based MCM-48(25) matrix with maximum Zr content in catalyst enhanced the photocatalytic activity with 47.5 µmol methanol formation, possessing high surface area
S
BET
of 1324 m
2
g
−1
, under UV–Visible light irradiation. The characterization results highlighted the influence of visible light active Cu-porphyrin interaction over Zr-MCM-48 silica frameworks due to transition of electrons from the porphyrin centres to the active Zr sites as evident from DRS analysis. Moreover, the impregnation of Cu-porphyrin over Zr-MCM-48(25) displayed methanol formation about 365.11 µmol under UV–Visible light using 0.1 M NaOH and 0.1 M Na
2
SO
3
. Also, the effect of varying reaction conditions shown that catalyst concentration, metal loading, light intensity and stirring speed pronouncedly impact the formation of methanol. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-021-06676-x |