Loading…

Soft M-Ideals and Soft S-Ideals in Soft S-Algebras

In this paper, we first introduce and discuss new classes of ideals in − d algebra like M Ideals and S Ideals. Also, we introduce new classes of soft algebras they are called soft S algebras. Next, we use our new connotations to introduce and investigate new concepts in soft S − algebras like soft M...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-07, Vol.1234 (1), p.12100
Main Authors: Mahmood Khalil, Shuker, Adnan Abdul-Ghani, Samaher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583
cites cdi_FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583
container_end_page
container_issue 1
container_start_page 12100
container_title Journal of physics. Conference series
container_volume 1234
creator Mahmood Khalil, Shuker
Adnan Abdul-Ghani, Samaher
description In this paper, we first introduce and discuss new classes of ideals in − d algebra like M Ideals and S Ideals. Also, we introduce new classes of soft algebras they are called soft S algebras. Next, we use our new connotations to introduce and investigate new concepts in soft S − algebras like soft M − Ideals and soft S − Ideals. In this work, we prove that every S − Ideal is M − Ideal. Moreover, we show that it is not necessary every M − Ideal of is S − Ideal of by a counterexample. Also, some properties of our connotations are given.
doi_str_mv 10.1088/1742-6596/1234/1/012100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566205007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566205007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583</originalsourceid><addsrcrecordid>eNqFUN9LwzAQDqLgnP4NFnwTau-SNkkfR_HHZKJQfQ5ZkkrHbGuyPfjf21o3EQQPjju--7477iPkHOEKQcoERUpjnuU8QcrSBBNAigAHZLKfHO57KY_JSQgrANaHmBBattUmeojn1ul1iHRjoy-k3CF1swNm61e39DqckqOqn7iz7zolLzfXz8VdvHi8nRezRWxSZJvYaAncaQ6WG4O5NClH1qfDSkiWOmldnlWGMm2W3DmXCamtFGhYjtRmkk3Jxbi38-371oWNWrVb3_QnFc04p5ABiJ4lRpbxbQjeVarz9Zv2HwpBDQap4XU12KAGgxSq0aBeyUZl3XY_q_9XXf6hun8qyt9E1dmKfQLNpnIV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566205007</pqid></control><display><type>article</type><title>Soft M-Ideals and Soft S-Ideals in Soft S-Algebras</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Mahmood Khalil, Shuker ; Adnan Abdul-Ghani, Samaher</creator><creatorcontrib>Mahmood Khalil, Shuker ; Adnan Abdul-Ghani, Samaher</creatorcontrib><description>In this paper, we first introduce and discuss new classes of ideals in − d algebra like M Ideals and S Ideals. Also, we introduce new classes of soft algebras they are called soft S algebras. Next, we use our new connotations to introduce and investigate new concepts in soft S − algebras like soft M − Ideals and soft S − Ideals. In this work, we prove that every S − Ideal is M − Ideal. Moreover, we show that it is not necessary every M − Ideal of is S − Ideal of by a counterexample. Also, some properties of our connotations are given.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1234/1/012100</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algebra ; algebras ; ideals ; Physics ; Soft ; Soft sets theory ; subalgebras</subject><ispartof>Journal of physics. Conference series, 2019-07, Vol.1234 (1), p.12100</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583</citedby><cites>FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566205007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Mahmood Khalil, Shuker</creatorcontrib><creatorcontrib>Adnan Abdul-Ghani, Samaher</creatorcontrib><title>Soft M-Ideals and Soft S-Ideals in Soft S-Algebras</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, we first introduce and discuss new classes of ideals in − d algebra like M Ideals and S Ideals. Also, we introduce new classes of soft algebras they are called soft S algebras. Next, we use our new connotations to introduce and investigate new concepts in soft S − algebras like soft M − Ideals and soft S − Ideals. In this work, we prove that every S − Ideal is M − Ideal. Moreover, we show that it is not necessary every M − Ideal of is S − Ideal of by a counterexample. Also, some properties of our connotations are given.</description><subject>Algebra</subject><subject>algebras</subject><subject>ideals</subject><subject>Physics</subject><subject>Soft</subject><subject>Soft sets theory</subject><subject>subalgebras</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUN9LwzAQDqLgnP4NFnwTau-SNkkfR_HHZKJQfQ5ZkkrHbGuyPfjf21o3EQQPjju--7477iPkHOEKQcoERUpjnuU8QcrSBBNAigAHZLKfHO57KY_JSQgrANaHmBBattUmeojn1ul1iHRjoy-k3CF1swNm61e39DqckqOqn7iz7zolLzfXz8VdvHi8nRezRWxSZJvYaAncaQ6WG4O5NClH1qfDSkiWOmldnlWGMm2W3DmXCamtFGhYjtRmkk3Jxbi38-371oWNWrVb3_QnFc04p5ABiJ4lRpbxbQjeVarz9Zv2HwpBDQap4XU12KAGgxSq0aBeyUZl3XY_q_9XXf6hun8qyt9E1dmKfQLNpnIV</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mahmood Khalil, Shuker</creator><creator>Adnan Abdul-Ghani, Samaher</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190701</creationdate><title>Soft M-Ideals and Soft S-Ideals in Soft S-Algebras</title><author>Mahmood Khalil, Shuker ; Adnan Abdul-Ghani, Samaher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>algebras</topic><topic>ideals</topic><topic>Physics</topic><topic>Soft</topic><topic>Soft sets theory</topic><topic>subalgebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmood Khalil, Shuker</creatorcontrib><creatorcontrib>Adnan Abdul-Ghani, Samaher</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmood Khalil, Shuker</au><au>Adnan Abdul-Ghani, Samaher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft M-Ideals and Soft S-Ideals in Soft S-Algebras</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>1234</volume><issue>1</issue><spage>12100</spage><pages>12100-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, we first introduce and discuss new classes of ideals in − d algebra like M Ideals and S Ideals. Also, we introduce new classes of soft algebras they are called soft S algebras. Next, we use our new connotations to introduce and investigate new concepts in soft S − algebras like soft M − Ideals and soft S − Ideals. In this work, we prove that every S − Ideal is M − Ideal. Moreover, we show that it is not necessary every M − Ideal of is S − Ideal of by a counterexample. Also, some properties of our connotations are given.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1234/1/012100</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-07, Vol.1234 (1), p.12100
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566205007
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Algebra
algebras
ideals
Physics
Soft
Soft sets theory
subalgebras
title Soft M-Ideals and Soft S-Ideals in Soft S-Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20M-Ideals%20and%20Soft%20S-Ideals%20in%20Soft%20S-Algebras&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Mahmood%20Khalil,%20Shuker&rft.date=2019-07-01&rft.volume=1234&rft.issue=1&rft.spage=12100&rft.pages=12100-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1234/1/012100&rft_dat=%3Cproquest_cross%3E2566205007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-ca806ea60d6cc198c4613461e1f7834e8de95fc23acb6eee578ad871c3912d583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566205007&rft_id=info:pmid/&rfr_iscdi=true