Loading…

Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data

Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-08, Vol.1245 (1), p.12020
Main Authors: Ramadhani, I, Minarto, E, Sungkono
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3
cites cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3
container_end_page
container_issue 1
container_start_page 12020
container_title Journal of physics. Conference series
container_volume 1245
creator Ramadhani, I
Minarto, E
Sungkono
description Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.
doi_str_mv 10.1088/1742-6596/1245/1/012020
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566240477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566240477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhYMoWKvP4II3Vqjd3WSzqXe1rVZpVWjt7TLdn7olydZNivQVfGoTK4ogODczzJwzw3xBcErwJcFJ0iE8ou2YdeMOoRHrkA4mFFO8FzS-J_vfdZIcBkdFscI4rII3gveJzpzfomsotEKj7cJbhQYeli436Rb10qXztnzJ0PlkNOi1rhCgB_2GZlq-5PZ1o5FxHg10qX1mc5sv0cQpnaIn8JDVXWRzNNe-tBJSNEy1LP1nOXWbXNX68_lw2kIDKOE4ODCQFvrkKzeD55vhrD9qjx9v7_q9cVtGJCzbhsiFNhAqUDgxKo5jQ0IseVeFlDGGCZFGUgI4gS4DEjHGNV1wHMGiG3EGYTM42-1de1d9UJRi5TY-r04KyuKYRjjivFLxnUp6VxReG7H2NgO_FQSLGryokYoar6jBCyJ24CtnuHNat_5Z_b_r4g_X_VN_-lso1sqEHyWMkdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566240477</pqid></control><display><type>article</type><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Ramadhani, I ; Minarto, E ; Sungkono</creator><creatorcontrib>Ramadhani, I ; Minarto, E ; Sungkono</creatorcontrib><description>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1245/1/012020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Exploration ; Optimization ; Optimization techniques ; Sounding</subject><ispartof>Journal of physics. Conference series, 2019-08, Vol.1245 (1), p.12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</citedby><cites>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566240477?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Ramadhani, I</creatorcontrib><creatorcontrib>Minarto, E</creatorcontrib><creatorcontrib>Sungkono</creatorcontrib><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</description><subject>Algorithms</subject><subject>Exploration</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Sounding</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN1Kw0AQhYMoWKvP4II3Vqjd3WSzqXe1rVZpVWjt7TLdn7olydZNivQVfGoTK4ogODczzJwzw3xBcErwJcFJ0iE8ou2YdeMOoRHrkA4mFFO8FzS-J_vfdZIcBkdFscI4rII3gveJzpzfomsotEKj7cJbhQYeli436Rb10qXztnzJ0PlkNOi1rhCgB_2GZlq-5PZ1o5FxHg10qX1mc5sv0cQpnaIn8JDVXWRzNNe-tBJSNEy1LP1nOXWbXNX68_lw2kIDKOE4ODCQFvrkKzeD55vhrD9qjx9v7_q9cVtGJCzbhsiFNhAqUDgxKo5jQ0IseVeFlDGGCZFGUgI4gS4DEjHGNV1wHMGiG3EGYTM42-1de1d9UJRi5TY-r04KyuKYRjjivFLxnUp6VxReG7H2NgO_FQSLGryokYoar6jBCyJ24CtnuHNat_5Z_b_r4g_X_VN_-lso1sqEHyWMkdI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Ramadhani, I</creator><creator>Minarto, E</creator><creator>Sungkono</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190801</creationdate><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><author>Ramadhani, I ; Minarto, E ; Sungkono</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Exploration</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Sounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadhani, I</creatorcontrib><creatorcontrib>Minarto, E</creatorcontrib><creatorcontrib>Sungkono</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadhani, I</au><au>Minarto, E</au><au>Sungkono</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>1245</volume><issue>1</issue><spage>12020</spage><pages>12020-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1245/1/012020</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-08, Vol.1245 (1), p.12020
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566240477
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Algorithms
Exploration
Optimization
Optimization techniques
Sounding
title Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20Based%20Hybrid%20Dragonfly%20Algorithm%20(MHDA):%20a%20New%20Technique%20for%20Determining%20Model%20Parameter%20in%20Vertical%20Electrical%20Sounding%20(VES)%20Data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ramadhani,%20I&rft.date=2019-08-01&rft.volume=1245&rft.issue=1&rft.spage=12020&rft.pages=12020-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1245/1/012020&rft_dat=%3Cproquest_iop_j%3E2566240477%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566240477&rft_id=info:pmid/&rfr_iscdi=true