Loading…
Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data
Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to...
Saved in:
Published in: | Journal of physics. Conference series 2019-08, Vol.1245 (1), p.12020 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12020 |
container_title | Journal of physics. Conference series |
container_volume | 1245 |
creator | Ramadhani, I Minarto, E Sungkono |
description | Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem. |
doi_str_mv | 10.1088/1742-6596/1245/1/012020 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566240477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566240477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhYMoWKvP4II3Vqjd3WSzqXe1rVZpVWjt7TLdn7olydZNivQVfGoTK4ogODczzJwzw3xBcErwJcFJ0iE8ou2YdeMOoRHrkA4mFFO8FzS-J_vfdZIcBkdFscI4rII3gveJzpzfomsotEKj7cJbhQYeli436Rb10qXztnzJ0PlkNOi1rhCgB_2GZlq-5PZ1o5FxHg10qX1mc5sv0cQpnaIn8JDVXWRzNNe-tBJSNEy1LP1nOXWbXNX68_lw2kIDKOE4ODCQFvrkKzeD55vhrD9qjx9v7_q9cVtGJCzbhsiFNhAqUDgxKo5jQ0IseVeFlDGGCZFGUgI4gS4DEjHGNV1wHMGiG3EGYTM42-1de1d9UJRi5TY-r04KyuKYRjjivFLxnUp6VxReG7H2NgO_FQSLGryokYoar6jBCyJ24CtnuHNat_5Z_b_r4g_X_VN_-lso1sqEHyWMkdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566240477</pqid></control><display><type>article</type><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Ramadhani, I ; Minarto, E ; Sungkono</creator><creatorcontrib>Ramadhani, I ; Minarto, E ; Sungkono</creatorcontrib><description>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1245/1/012020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Exploration ; Optimization ; Optimization techniques ; Sounding</subject><ispartof>Journal of physics. Conference series, 2019-08, Vol.1245 (1), p.12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</citedby><cites>FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566240477?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Ramadhani, I</creatorcontrib><creatorcontrib>Minarto, E</creatorcontrib><creatorcontrib>Sungkono</creatorcontrib><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</description><subject>Algorithms</subject><subject>Exploration</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Sounding</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN1Kw0AQhYMoWKvP4II3Vqjd3WSzqXe1rVZpVWjt7TLdn7olydZNivQVfGoTK4ogODczzJwzw3xBcErwJcFJ0iE8ou2YdeMOoRHrkA4mFFO8FzS-J_vfdZIcBkdFscI4rII3gveJzpzfomsotEKj7cJbhQYeli436Rb10qXztnzJ0PlkNOi1rhCgB_2GZlq-5PZ1o5FxHg10qX1mc5sv0cQpnaIn8JDVXWRzNNe-tBJSNEy1LP1nOXWbXNX68_lw2kIDKOE4ODCQFvrkKzeD55vhrD9qjx9v7_q9cVtGJCzbhsiFNhAqUDgxKo5jQ0IseVeFlDGGCZFGUgI4gS4DEjHGNV1wHMGiG3EGYTM42-1de1d9UJRi5TY-r04KyuKYRjjivFLxnUp6VxReG7H2NgO_FQSLGryokYoar6jBCyJ24CtnuHNat_5Z_b_r4g_X_VN_-lso1sqEHyWMkdI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Ramadhani, I</creator><creator>Minarto, E</creator><creator>Sungkono</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190801</creationdate><title>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</title><author>Ramadhani, I ; Minarto, E ; Sungkono</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Exploration</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Sounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramadhani, I</creatorcontrib><creatorcontrib>Minarto, E</creatorcontrib><creatorcontrib>Sungkono</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramadhani, I</au><au>Minarto, E</au><au>Sungkono</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>1245</volume><issue>1</issue><spage>12020</spage><pages>12020-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Vertical Electrical Sounding (VES) data inversion is a nonlinear inversion problem because several models can fit to the observed data. Therefore, a new approach based on nonlinear optimization technique is implemented which is called Memory based Hybrid Dragonfly Algorithm (MHDA). It is proposed to solve drawback of Dragonfly Algorithm (DA), i.e. low convergence rate which is caused by high exploration behaviour of DA. The drawback can lead to the local optimum solutions. MHDA successfully balances exploration and exploitation behaviours of DA to obtain global optimum solution. In this research, initially, MHDA is tested for the noise contaminated synthetic VES data to assess its performance. Subsequently, MHDA is applied for the field VES data. In both results, MHDA is able to provide Posterior Distribution Model (PDM) which is obtained from exploration process. All accepted models of PDM have lower misfit value than specified tolerance value in the inversion process. The PDM can be used to estimate solution via median value of PDM. Additionally, the uncertainty estimation of obtained solution can be determined from standard deviation value of PDM. The inversion results of synthetic and field VES data indicate that MHDA is an innovative technique to solve VES data inversion problem.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1245/1/012020</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-08, Vol.1245 (1), p.12020 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566240477 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Algorithms Exploration Optimization Optimization techniques Sounding |
title | Memory Based Hybrid Dragonfly Algorithm (MHDA): a New Technique for Determining Model Parameter in Vertical Electrical Sounding (VES) Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20Based%20Hybrid%20Dragonfly%20Algorithm%20(MHDA):%20a%20New%20Technique%20for%20Determining%20Model%20Parameter%20in%20Vertical%20Electrical%20Sounding%20(VES)%20Data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ramadhani,%20I&rft.date=2019-08-01&rft.volume=1245&rft.issue=1&rft.spage=12020&rft.pages=12020-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1245/1/012020&rft_dat=%3Cproquest_iop_j%3E2566240477%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-f1cbefa3dad08fd666f130c79d32555011cfc21a08a95a14557e2b704ab9475a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566240477&rft_id=info:pmid/&rfr_iscdi=true |