Loading…
Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion
The microstructure evolution of 316L stainless steels subjected to torsion deformation and its corrosion resistance in 1 M H 2 SO 4 solutions were studied. Microstructure evolution of the annealed and torsion-processed samples was characterized by x-ray diffraction and electron backscatter diffracti...
Saved in:
Published in: | Materials research express 2021-08, Vol.8 (8), p.86519 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33 |
container_end_page | |
container_issue | 8 |
container_start_page | 86519 |
container_title | Materials research express |
container_volume | 8 |
creator | Zhang, Pengyan Han, Weixue Huang, Zhenyi Li, Guisheng Zhang, Mingya Li, Jinghui |
description | The microstructure evolution of 316L stainless steels subjected to torsion deformation and its corrosion resistance in 1 M H
2
SO
4
solutions were studied. Microstructure evolution of the annealed and torsion-processed samples was characterized by x-ray diffraction and electron backscatter diffraction techniques. The results showed that no martensitic transformation occurred during torsion deformation, while dynamic recrystallization occurred within the samples slowing down the tendency of increasing dislocation density and storage energy. Electrochemical tests including potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were used in the 1 M H
2
SO
4
solution to evaluate the corrosion resistance of the annealed and torsion-processed samples. The results illustrated that small deformation (torsion for 1 turn) could enhance the corrosion resistance of the 316L stainless steels by increasing the stability of the passive film, the medium deformation (torsion for 3 turns) will deteriorate the corrosion resistance due to high-density dislocations formed during torsion deformation, while large deformation (torsion for 5 turns) could improve the corrosion resistance compared with the medium deformation due to the occurrence of dynamic recrystallization and the high-density deformation twins formed. |
doi_str_mv | 10.1088/2053-1591/ac1ecc |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566502548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5296d01c3ba24773aa85be5f4a994311</doaj_id><sourcerecordid>2566502548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33</originalsourceid><addsrcrecordid>eNp9UU1LJDEQbcQFRb3vsUHw5OzkoyudHEX8ghEvu7eFUJ2u1h7ayZikRf_9prdFPYikIFWV916FV0Xxk7NfnGm9FAzkgoPhS3ScnNsp9t9bu5_yveIoxjVjTNRGglD7xd_b3gUfUxhdGgOV9OyHMfV-U-KmLZ0P-XGqGnrA596H0nel5GpVxoT9ZqAYc0Y0lHFs1uQStWXyOcLEOix-dDhEOnq7D4o_lxe_z68Xq7urm_Oz1cIBl2mhlNHUVtRoA5IQmAYEbTiKtqtrVzvdAOsck1ghE1XratWBbjupqKlYI-VBcTPrth7Xdhv6Rwyv1mNv_zd8uLcYUu8GsiCMahl3skFR1bVE1NAQdBUaU0nOs9bxrLUN_mmkmOzaj2GTv28FKAVMQKUzis2oybwYqHufypmdVmInz-3kuZ1XkimnM6X32w_Nb-AnX8Afw4vV-TCtgBu7zSb8A6o7mqs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566502548</pqid></control><display><type>article</type><title>Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion</title><source>Publicly Available Content Database</source><creator>Zhang, Pengyan ; Han, Weixue ; Huang, Zhenyi ; Li, Guisheng ; Zhang, Mingya ; Li, Jinghui</creator><creatorcontrib>Zhang, Pengyan ; Han, Weixue ; Huang, Zhenyi ; Li, Guisheng ; Zhang, Mingya ; Li, Jinghui</creatorcontrib><description>The microstructure evolution of 316L stainless steels subjected to torsion deformation and its corrosion resistance in 1 M H
2
SO
4
solutions were studied. Microstructure evolution of the annealed and torsion-processed samples was characterized by x-ray diffraction and electron backscatter diffraction techniques. The results showed that no martensitic transformation occurred during torsion deformation, while dynamic recrystallization occurred within the samples slowing down the tendency of increasing dislocation density and storage energy. Electrochemical tests including potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were used in the 1 M H
2
SO
4
solution to evaluate the corrosion resistance of the annealed and torsion-processed samples. The results illustrated that small deformation (torsion for 1 turn) could enhance the corrosion resistance of the 316L stainless steels by increasing the stability of the passive film, the medium deformation (torsion for 3 turns) will deteriorate the corrosion resistance due to high-density dislocations formed during torsion deformation, while large deformation (torsion for 5 turns) could improve the corrosion resistance compared with the medium deformation due to the occurrence of dynamic recrystallization and the high-density deformation twins formed.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ac1ecc</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>316L stainless steel ; Annealing ; Corrosion resistance ; Corrosion resistant steels ; Dislocation density ; Dynamic recrystallization ; Electrochemical impedance spectroscopy ; Electrode polarization ; Electron backscatter diffraction ; Energy storage ; Evolution ; Martensitic transformations ; Microstructure ; microstructure evolution ; Stainless steel ; Stainless steels ; Sulfuric acid ; torsion deformation</subject><ispartof>Materials research express, 2021-08, Vol.8 (8), p.86519</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33</citedby><cites>FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33</cites><orcidid>0000-0002-0301-6353 ; 0000-0001-8780-9213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566502548?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Zhang, Pengyan</creatorcontrib><creatorcontrib>Han, Weixue</creatorcontrib><creatorcontrib>Huang, Zhenyi</creatorcontrib><creatorcontrib>Li, Guisheng</creatorcontrib><creatorcontrib>Zhang, Mingya</creatorcontrib><creatorcontrib>Li, Jinghui</creatorcontrib><title>Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The microstructure evolution of 316L stainless steels subjected to torsion deformation and its corrosion resistance in 1 M H
2
SO
4
solutions were studied. Microstructure evolution of the annealed and torsion-processed samples was characterized by x-ray diffraction and electron backscatter diffraction techniques. The results showed that no martensitic transformation occurred during torsion deformation, while dynamic recrystallization occurred within the samples slowing down the tendency of increasing dislocation density and storage energy. Electrochemical tests including potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were used in the 1 M H
2
SO
4
solution to evaluate the corrosion resistance of the annealed and torsion-processed samples. The results illustrated that small deformation (torsion for 1 turn) could enhance the corrosion resistance of the 316L stainless steels by increasing the stability of the passive film, the medium deformation (torsion for 3 turns) will deteriorate the corrosion resistance due to high-density dislocations formed during torsion deformation, while large deformation (torsion for 5 turns) could improve the corrosion resistance compared with the medium deformation due to the occurrence of dynamic recrystallization and the high-density deformation twins formed.</description><subject>316L stainless steel</subject><subject>Annealing</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Dislocation density</subject><subject>Dynamic recrystallization</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>Electron backscatter diffraction</subject><subject>Energy storage</subject><subject>Evolution</subject><subject>Martensitic transformations</subject><subject>Microstructure</subject><subject>microstructure evolution</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Sulfuric acid</subject><subject>torsion deformation</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LJDEQbcQFRb3vsUHw5OzkoyudHEX8ghEvu7eFUJ2u1h7ayZikRf_9prdFPYikIFWV916FV0Xxk7NfnGm9FAzkgoPhS3ScnNsp9t9bu5_yveIoxjVjTNRGglD7xd_b3gUfUxhdGgOV9OyHMfV-U-KmLZ0P-XGqGnrA596H0nel5GpVxoT9ZqAYc0Y0lHFs1uQStWXyOcLEOix-dDhEOnq7D4o_lxe_z68Xq7urm_Oz1cIBl2mhlNHUVtRoA5IQmAYEbTiKtqtrVzvdAOsck1ghE1XratWBbjupqKlYI-VBcTPrth7Xdhv6Rwyv1mNv_zd8uLcYUu8GsiCMahl3skFR1bVE1NAQdBUaU0nOs9bxrLUN_mmkmOzaj2GTv28FKAVMQKUzis2oybwYqHufypmdVmInz-3kuZ1XkimnM6X32w_Nb-AnX8Afw4vV-TCtgBu7zSb8A6o7mqs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhang, Pengyan</creator><creator>Han, Weixue</creator><creator>Huang, Zhenyi</creator><creator>Li, Guisheng</creator><creator>Zhang, Mingya</creator><creator>Li, Jinghui</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0301-6353</orcidid><orcidid>https://orcid.org/0000-0001-8780-9213</orcidid></search><sort><creationdate>20210801</creationdate><title>Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion</title><author>Zhang, Pengyan ; Han, Weixue ; Huang, Zhenyi ; Li, Guisheng ; Zhang, Mingya ; Li, Jinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>316L stainless steel</topic><topic>Annealing</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Dislocation density</topic><topic>Dynamic recrystallization</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>Electron backscatter diffraction</topic><topic>Energy storage</topic><topic>Evolution</topic><topic>Martensitic transformations</topic><topic>Microstructure</topic><topic>microstructure evolution</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Sulfuric acid</topic><topic>torsion deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengyan</creatorcontrib><creatorcontrib>Han, Weixue</creatorcontrib><creatorcontrib>Huang, Zhenyi</creatorcontrib><creatorcontrib>Li, Guisheng</creatorcontrib><creatorcontrib>Zhang, Mingya</creatorcontrib><creatorcontrib>Li, Jinghui</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengyan</au><au>Han, Weixue</au><au>Huang, Zhenyi</au><au>Li, Guisheng</au><au>Zhang, Mingya</au><au>Li, Jinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>8</volume><issue>8</issue><spage>86519</spage><pages>86519-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The microstructure evolution of 316L stainless steels subjected to torsion deformation and its corrosion resistance in 1 M H
2
SO
4
solutions were studied. Microstructure evolution of the annealed and torsion-processed samples was characterized by x-ray diffraction and electron backscatter diffraction techniques. The results showed that no martensitic transformation occurred during torsion deformation, while dynamic recrystallization occurred within the samples slowing down the tendency of increasing dislocation density and storage energy. Electrochemical tests including potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were used in the 1 M H
2
SO
4
solution to evaluate the corrosion resistance of the annealed and torsion-processed samples. The results illustrated that small deformation (torsion for 1 turn) could enhance the corrosion resistance of the 316L stainless steels by increasing the stability of the passive film, the medium deformation (torsion for 3 turns) will deteriorate the corrosion resistance due to high-density dislocations formed during torsion deformation, while large deformation (torsion for 5 turns) could improve the corrosion resistance compared with the medium deformation due to the occurrence of dynamic recrystallization and the high-density deformation twins formed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ac1ecc</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0301-6353</orcidid><orcidid>https://orcid.org/0000-0001-8780-9213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2021-08, Vol.8 (8), p.86519 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_proquest_journals_2566502548 |
source | Publicly Available Content Database |
subjects | 316L stainless steel Annealing Corrosion resistance Corrosion resistant steels Dislocation density Dynamic recrystallization Electrochemical impedance spectroscopy Electrode polarization Electron backscatter diffraction Energy storage Evolution Martensitic transformations Microstructure microstructure evolution Stainless steel Stainless steels Sulfuric acid torsion deformation |
title | Microstructure evolution and corrosion behavior of 316L stainless steel subjected to torsion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20corrosion%20behavior%20of%20316L%20stainless%20steel%20subjected%20to%20torsion&rft.jtitle=Materials%20research%20express&rft.au=Zhang,%20Pengyan&rft.date=2021-08-01&rft.volume=8&rft.issue=8&rft.spage=86519&rft.pages=86519-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ac1ecc&rft_dat=%3Cproquest_iop_j%3E2566502548%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-6698ed4eb8953ea5085a5891a2df77c7c8b50fc03a4a024dc76f58df36eb40b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566502548&rft_id=info:pmid/&rfr_iscdi=true |