Loading…

Ensemble dimension reduction based on spectral disturbance for subspace clustering

The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clust...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2021-09, Vol.227, p.107182, Article 107182
Main Authors: Chen, Xiaoyun, Wang, Qiaoping, Zhuang, Shanshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3
cites cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3
container_end_page
container_issue
container_start_page 107182
container_title Knowledge-based systems
container_volume 227
creator Chen, Xiaoyun
Wang, Qiaoping
Zhuang, Shanshan
description The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.
doi_str_mv 10.1016/j.knosys.2021.107182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566528276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121004457</els_id><sourcerecordid>2566528276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz10n6UfaiyDL-gELgug5pMlEUrttzbSC_94s9exp3hne-XoYu-aw4cDL23bz2Q_0QxsBgseS5JU4YSteSZHKHOpTtoK6gFRCwc_ZBVELAELwasVedz3hoekwsf6APfmhTwLa2UxH1WhCm0RBI5op6C66aJpDo3uDiRtCQnNDo46J6WaaMPj-45KdOd0RXv3FNXt_2L1tn9L9y-Pz9n6fmizLp7QUPEejpbMiHgPcmNrmICy42uXgONaZ06XVUGboHJSVAeQNSGjQ5JW02ZrdLHPHMHzNSJNqhzn0caUSRVkWohKyjK58cZkwEAV0agz-oMOP4qCO9FSrFnrqSE8t9GLb3dKG8YNvj0GR8Ri_tj5EFMoO_v8Bv7WAe9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566528276</pqid></control><display><type>article</type><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</creator><creatorcontrib>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</creatorcontrib><description>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.107182</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Datasets ; Ensemble dimension reduction ; High dimension ; Least squares ; Projection subspace clustering ; Reduction ; Small sample size data ; Spectra ; Spectral disturbance ; Subspaces</subject><ispartof>Knowledge-based systems, 2021-09, Vol.227, p.107182, Article 107182</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</citedby><cites>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</cites><orcidid>0000-0003-3178-1949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Chen, Xiaoyun</creatorcontrib><creatorcontrib>Wang, Qiaoping</creatorcontrib><creatorcontrib>Zhuang, Shanshan</creatorcontrib><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><title>Knowledge-based systems</title><description>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</description><subject>Clustering</subject><subject>Datasets</subject><subject>Ensemble dimension reduction</subject><subject>High dimension</subject><subject>Least squares</subject><subject>Projection subspace clustering</subject><subject>Reduction</subject><subject>Small sample size data</subject><subject>Spectra</subject><subject>Spectral disturbance</subject><subject>Subspaces</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz10n6UfaiyDL-gELgug5pMlEUrttzbSC_94s9exp3hne-XoYu-aw4cDL23bz2Q_0QxsBgseS5JU4YSteSZHKHOpTtoK6gFRCwc_ZBVELAELwasVedz3hoekwsf6APfmhTwLa2UxH1WhCm0RBI5op6C66aJpDo3uDiRtCQnNDo46J6WaaMPj-45KdOd0RXv3FNXt_2L1tn9L9y-Pz9n6fmizLp7QUPEejpbMiHgPcmNrmICy42uXgONaZ06XVUGboHJSVAeQNSGjQ5JW02ZrdLHPHMHzNSJNqhzn0caUSRVkWohKyjK58cZkwEAV0agz-oMOP4qCO9FSrFnrqSE8t9GLb3dKG8YNvj0GR8Ri_tj5EFMoO_v8Bv7WAe9A</recordid><startdate>20210905</startdate><enddate>20210905</enddate><creator>Chen, Xiaoyun</creator><creator>Wang, Qiaoping</creator><creator>Zhuang, Shanshan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3178-1949</orcidid></search><sort><creationdate>20210905</creationdate><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><author>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Datasets</topic><topic>Ensemble dimension reduction</topic><topic>High dimension</topic><topic>Least squares</topic><topic>Projection subspace clustering</topic><topic>Reduction</topic><topic>Small sample size data</topic><topic>Spectra</topic><topic>Spectral disturbance</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyun</creatorcontrib><creatorcontrib>Wang, Qiaoping</creatorcontrib><creatorcontrib>Zhuang, Shanshan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyun</au><au>Wang, Qiaoping</au><au>Zhuang, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble dimension reduction based on spectral disturbance for subspace clustering</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-09-05</date><risdate>2021</risdate><volume>227</volume><spage>107182</spage><pages>107182-</pages><artnum>107182</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.107182</doi><orcidid>https://orcid.org/0000-0003-3178-1949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-09, Vol.227, p.107182, Article 107182
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2566528276
source Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection 2022-2024
subjects Clustering
Datasets
Ensemble dimension reduction
High dimension
Least squares
Projection subspace clustering
Reduction
Small sample size data
Spectra
Spectral disturbance
Subspaces
title Ensemble dimension reduction based on spectral disturbance for subspace clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20dimension%20reduction%20based%20on%20spectral%20disturbance%20for%20subspace%20clustering&rft.jtitle=Knowledge-based%20systems&rft.au=Chen,%20Xiaoyun&rft.date=2021-09-05&rft.volume=227&rft.spage=107182&rft.pages=107182-&rft.artnum=107182&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.107182&rft_dat=%3Cproquest_cross%3E2566528276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566528276&rft_id=info:pmid/&rfr_iscdi=true