Loading…
Ensemble dimension reduction based on spectral disturbance for subspace clustering
The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clust...
Saved in:
Published in: | Knowledge-based systems 2021-09, Vol.227, p.107182, Article 107182 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3 |
container_end_page | |
container_issue | |
container_start_page | 107182 |
container_title | Knowledge-based systems |
container_volume | 227 |
creator | Chen, Xiaoyun Wang, Qiaoping Zhuang, Shanshan |
description | The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective. |
doi_str_mv | 10.1016/j.knosys.2021.107182 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566528276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121004457</els_id><sourcerecordid>2566528276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz10n6UfaiyDL-gELgug5pMlEUrttzbSC_94s9exp3hne-XoYu-aw4cDL23bz2Q_0QxsBgseS5JU4YSteSZHKHOpTtoK6gFRCwc_ZBVELAELwasVedz3hoekwsf6APfmhTwLa2UxH1WhCm0RBI5op6C66aJpDo3uDiRtCQnNDo46J6WaaMPj-45KdOd0RXv3FNXt_2L1tn9L9y-Pz9n6fmizLp7QUPEejpbMiHgPcmNrmICy42uXgONaZ06XVUGboHJSVAeQNSGjQ5JW02ZrdLHPHMHzNSJNqhzn0caUSRVkWohKyjK58cZkwEAV0agz-oMOP4qCO9FSrFnrqSE8t9GLb3dKG8YNvj0GR8Ri_tj5EFMoO_v8Bv7WAe9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566528276</pqid></control><display><type>article</type><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><source>Library & Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</creator><creatorcontrib>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</creatorcontrib><description>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.107182</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Datasets ; Ensemble dimension reduction ; High dimension ; Least squares ; Projection subspace clustering ; Reduction ; Small sample size data ; Spectra ; Spectral disturbance ; Subspaces</subject><ispartof>Knowledge-based systems, 2021-09, Vol.227, p.107182, Article 107182</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</citedby><cites>FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</cites><orcidid>0000-0003-3178-1949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Chen, Xiaoyun</creatorcontrib><creatorcontrib>Wang, Qiaoping</creatorcontrib><creatorcontrib>Zhuang, Shanshan</creatorcontrib><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><title>Knowledge-based systems</title><description>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</description><subject>Clustering</subject><subject>Datasets</subject><subject>Ensemble dimension reduction</subject><subject>High dimension</subject><subject>Least squares</subject><subject>Projection subspace clustering</subject><subject>Reduction</subject><subject>Small sample size data</subject><subject>Spectra</subject><subject>Spectral disturbance</subject><subject>Subspaces</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz10n6UfaiyDL-gELgug5pMlEUrttzbSC_94s9exp3hne-XoYu-aw4cDL23bz2Q_0QxsBgseS5JU4YSteSZHKHOpTtoK6gFRCwc_ZBVELAELwasVedz3hoekwsf6APfmhTwLa2UxH1WhCm0RBI5op6C66aJpDo3uDiRtCQnNDo46J6WaaMPj-45KdOd0RXv3FNXt_2L1tn9L9y-Pz9n6fmizLp7QUPEejpbMiHgPcmNrmICy42uXgONaZ06XVUGboHJSVAeQNSGjQ5JW02ZrdLHPHMHzNSJNqhzn0caUSRVkWohKyjK58cZkwEAV0agz-oMOP4qCO9FSrFnrqSE8t9GLb3dKG8YNvj0GR8Ri_tj5EFMoO_v8Bv7WAe9A</recordid><startdate>20210905</startdate><enddate>20210905</enddate><creator>Chen, Xiaoyun</creator><creator>Wang, Qiaoping</creator><creator>Zhuang, Shanshan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3178-1949</orcidid></search><sort><creationdate>20210905</creationdate><title>Ensemble dimension reduction based on spectral disturbance for subspace clustering</title><author>Chen, Xiaoyun ; Wang, Qiaoping ; Zhuang, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Datasets</topic><topic>Ensemble dimension reduction</topic><topic>High dimension</topic><topic>Least squares</topic><topic>Projection subspace clustering</topic><topic>Reduction</topic><topic>Small sample size data</topic><topic>Spectra</topic><topic>Spectral disturbance</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyun</creatorcontrib><creatorcontrib>Wang, Qiaoping</creatorcontrib><creatorcontrib>Zhuang, Shanshan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyun</au><au>Wang, Qiaoping</au><au>Zhuang, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble dimension reduction based on spectral disturbance for subspace clustering</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-09-05</date><risdate>2021</risdate><volume>227</volume><spage>107182</spage><pages>107182-</pages><artnum>107182</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>The feature distribution of high dimension, small sample size (HDSS) data is sparse, resulting in unsatisfactory clustering results. Dimension reduction methods play an inevitable role in analyzing and visualizing high-dimensional data. It is likely to cause the matrix singularity for subspace clustering when directly reduce the dimension of HDSS dataset. Therefore, we construct multiple data subsets from the original HDSS dataset for ensemble dimension reduction. Projection least square regression subspace clustering (PLSR) which combines projection technique with least-square regression is used as a base dimension reducer for ensemble dimension reduction, called EPLSR. Considering the spectral properties of spectral clustering, we propose the ensemble dimension reduction for subspace clustering based on spectral disturbance (SD-EPLSR) method. According to the theory of spectral disturbance, the weight coefficients are learned according to two principles: 1. The clustering results on each data subset should be close to the consensus clustering result. 2. Data subsets with similar clustering results should have approximate weights. Experiments on eight HDSS datasets demonstrate that our method is effective.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.107182</doi><orcidid>https://orcid.org/0000-0003-3178-1949</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2021-09, Vol.227, p.107182, Article 107182 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2566528276 |
source | Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection 2022-2024 |
subjects | Clustering Datasets Ensemble dimension reduction High dimension Least squares Projection subspace clustering Reduction Small sample size data Spectra Spectral disturbance Subspaces |
title | Ensemble dimension reduction based on spectral disturbance for subspace clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20dimension%20reduction%20based%20on%20spectral%20disturbance%20for%20subspace%20clustering&rft.jtitle=Knowledge-based%20systems&rft.au=Chen,%20Xiaoyun&rft.date=2021-09-05&rft.volume=227&rft.spage=107182&rft.pages=107182-&rft.artnum=107182&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.107182&rft_dat=%3Cproquest_cross%3E2566528276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6214eca7fd200201cc9d402d0f9f40f1e93fa6da063eff068c0e1b070bec487d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566528276&rft_id=info:pmid/&rfr_iscdi=true |