Loading…
A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind
The aim of this paper, we offereda new numerical methodwhich is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) andconstruct the operational matrix which is...
Saved in:
Published in: | Journal of physics. Conference series 2019-07, Vol.1279 (1), p.12067 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2747-192877b3ebc70c6f1d91c128aa2be3c333865249c1d33ea95efd5d8d38f33b363 |
container_end_page | |
container_issue | 1 |
container_start_page | 12067 |
container_title | Journal of physics. Conference series |
container_volume | 1279 |
creator | Talab Abdullah, Jalil Hussein Shuaa Al-Taie, Ali |
description | The aim of this paper, we offereda new numerical methodwhich is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) andconstruct the operational matrix which is a matrix representation for solution. The algorithm and someexamples are given; comparing the numerical results of proposed method with the numerical results of the other numerical method which is Bernstein Polynomials (B-Ps).Wewill show the high resolution of results by proposed method.The comparison between the Exact Solution(E-S) and the results of two methods are given by calculating absolute value of error and the Least Square Error (L.S.E).The results are calculated in Matlabcode. |
doi_str_mv | 10.1088/1742-6596/1279/1/012067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2567783382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567783382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-192877b3ebc70c6f1d91c128aa2be3c333865249c1d33ea95efd5d8d38f33b363</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm0Oa5NejjF1OlSY3gkhzcF1tE2XtBf-e1sqE0EwN1_ge9434QHgEqMbjDiPMZuRKE2yNMaEZTGOESYoZUdgctgcH-6cn4KzEHYI0f6wCXifQ-WqRvoiuBo6C5-6yvhCyRJuXNm1hasDtM7DdVEb6eGtN3rrygqu6tZ8-B5b7js5YEO43Rq4McrVGj4WtT4HJ1aWwVx8zyl4u12-Lu6j9fPdajFfR4qwGYtwRjhjOTW5YkilFusMK0y4lCQ3VPUf5WlCZpnCmlIjs8RYnWiuKbeU5jSlU3A19jbe7TsTWrFzna_7JwVJUsZ430B6io2U8i4Eb6xofFFJ_ykwEoNKMUgSgzAxqBRYjCr7JB2ThWt-qv9PXf-RenhZbH6DotGWfgHmcoLZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567783382</pqid></control><display><type>article</type><title>A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Talab Abdullah, Jalil ; Hussein Shuaa Al-Taie, Ali</creator><creatorcontrib>Talab Abdullah, Jalil ; Hussein Shuaa Al-Taie, Ali</creatorcontrib><description>The aim of this paper, we offereda new numerical methodwhich is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) andconstruct the operational matrix which is a matrix representation for solution. The algorithm and someexamples are given; comparing the numerical results of proposed method with the numerical results of the other numerical method which is Bernstein Polynomials (B-Ps).Wewill show the high resolution of results by proposed method.The comparison between the Exact Solution(E-S) and the results of two methods are given by calculating absolute value of error and the Least Square Error (L.S.E).The results are calculated in Matlabcode.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1279/1/012067</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Exact solutions ; Fredholm equations ; Fredholm Integral Equation ; Integral equations ; Matrix representation ; Numerical methods ; Physics ; Polynomials ; Touchard&Bernstein polynomials</subject><ispartof>Journal of physics. Conference series, 2019-07, Vol.1279 (1), p.12067</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2747-192877b3ebc70c6f1d91c128aa2be3c333865249c1d33ea95efd5d8d38f33b363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2567783382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Talab Abdullah, Jalil</creatorcontrib><creatorcontrib>Hussein Shuaa Al-Taie, Ali</creatorcontrib><title>A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The aim of this paper, we offereda new numerical methodwhich is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) andconstruct the operational matrix which is a matrix representation for solution. The algorithm and someexamples are given; comparing the numerical results of proposed method with the numerical results of the other numerical method which is Bernstein Polynomials (B-Ps).Wewill show the high resolution of results by proposed method.The comparison between the Exact Solution(E-S) and the results of two methods are given by calculating absolute value of error and the Least Square Error (L.S.E).The results are calculated in Matlabcode.</description><subject>Algorithms</subject><subject>Exact solutions</subject><subject>Fredholm equations</subject><subject>Fredholm Integral Equation</subject><subject>Integral equations</subject><subject>Matrix representation</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Touchard&Bernstein polynomials</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFtLwzAYhoMoOKe_wYB3Qm0Oa5NejjF1OlSY3gkhzcF1tE2XtBf-e1sqE0EwN1_ge9434QHgEqMbjDiPMZuRKE2yNMaEZTGOESYoZUdgctgcH-6cn4KzEHYI0f6wCXifQ-WqRvoiuBo6C5-6yvhCyRJuXNm1hasDtM7DdVEb6eGtN3rrygqu6tZ8-B5b7js5YEO43Rq4McrVGj4WtT4HJ1aWwVx8zyl4u12-Lu6j9fPdajFfR4qwGYtwRjhjOTW5YkilFusMK0y4lCQ3VPUf5WlCZpnCmlIjs8RYnWiuKbeU5jSlU3A19jbe7TsTWrFzna_7JwVJUsZ430B6io2U8i4Eb6xofFFJ_ykwEoNKMUgSgzAxqBRYjCr7JB2ThWt-qv9PXf-RenhZbH6DotGWfgHmcoLZ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Talab Abdullah, Jalil</creator><creator>Hussein Shuaa Al-Taie, Ali</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190701</creationdate><title>A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind</title><author>Talab Abdullah, Jalil ; Hussein Shuaa Al-Taie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-192877b3ebc70c6f1d91c128aa2be3c333865249c1d33ea95efd5d8d38f33b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Exact solutions</topic><topic>Fredholm equations</topic><topic>Fredholm Integral Equation</topic><topic>Integral equations</topic><topic>Matrix representation</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Touchard&Bernstein polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talab Abdullah, Jalil</creatorcontrib><creatorcontrib>Hussein Shuaa Al-Taie, Ali</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talab Abdullah, Jalil</au><au>Hussein Shuaa Al-Taie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>1279</volume><issue>1</issue><spage>12067</spage><pages>12067-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The aim of this paper, we offereda new numerical methodwhich is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) andconstruct the operational matrix which is a matrix representation for solution. The algorithm and someexamples are given; comparing the numerical results of proposed method with the numerical results of the other numerical method which is Bernstein Polynomials (B-Ps).Wewill show the high resolution of results by proposed method.The comparison between the Exact Solution(E-S) and the results of two methods are given by calculating absolute value of error and the Least Square Error (L.S.E).The results are calculated in Matlabcode.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1279/1/012067</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-07, Vol.1279 (1), p.12067 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2567783382 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Algorithms Exact solutions Fredholm equations Fredholm Integral Equation Integral equations Matrix representation Numerical methods Physics Polynomials Touchard&Bernstein polynomials |
title | A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20Numerical%20Solutions%20for%20Linear%20Fredholm%20Integral%20Equation%20of%20the%20Second%20Kind&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Talab%20Abdullah,%20Jalil&rft.date=2019-07-01&rft.volume=1279&rft.issue=1&rft.spage=12067&rft.pages=12067-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1279/1/012067&rft_dat=%3Cproquest_cross%3E2567783382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2747-192877b3ebc70c6f1d91c128aa2be3c333865249c1d33ea95efd5d8d38f33b363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2567783382&rft_id=info:pmid/&rfr_iscdi=true |