Loading…
An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics
•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for...
Saved in:
Published in: | Applied Mathematical Modelling 2021-10, Vol.98, p.287-308 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3 |
container_end_page | 308 |
container_issue | |
container_start_page | 287 |
container_title | Applied Mathematical Modelling |
container_volume | 98 |
creator | Liu, Tianhao Huang, Fanglin Wen, Weibin Deng, Shanyao Duan, Shengyu Fang, Daining |
description | •The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated.
An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system. |
doi_str_mv | 10.1016/j.apm.2021.05.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568031736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X21002547</els_id><sourcerecordid>2568031736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZ_gLeA510nm252F0-l-AUFLwreQrqZ7aY0SU3Sav-9Ke3Bk4dh5oV55-PJslsKBQXK71eF3JiihJIWUBVA2Vk2AgZ13sLk8_xPfZldhbACgCqpURamlmiz8W6Higx6OaDPnVfoCf5s1rrTkURtkGgbcell1M4Sg3FwinzrOBDjDNq4NaRz3mMXnSd9irW2KD2RVhHr7EmpvZVGd-E6u-jlOuDNKY-zj6fH99lLPn97fp1N53nHyirmCvoSoOU1KxlrOGDVYs1azuu-qSreMC4lQykpbxaqppS3zQL6miMCneCkZ-Ps7jg3vfe1xRDFym29TStFmfzAaM146qLHrs67EDz2YuO1kX4vKIgDW7ESia04sBVQicQ2eR6OHkzn7zR6ETqNtkOlDxCEcvof9y-dmoMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568031736</pqid></control><display><type>article</type><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><source>Elsevier</source><source>Business Source Ultimate (EBSCOHost)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</creator><creatorcontrib>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</creatorcontrib><description>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated.
An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2021.05.013</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Control stability ; Damping ; Dynamic response ; Dynamical systems ; Elongation ; Exact solutions ; Explicit ; Finite element method ; Interpolation ; Linear systems ; Momentum ; Momentum corrector ; Nonlinear dynamics ; Nonlinear systems ; Numerical dissipation ; Parameters ; Structural dynamics ; Time integration ; Truncation errors</subject><ispartof>Applied Mathematical Modelling, 2021-10, Vol.98, p.287-308</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</citedby><cites>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Tianhao</creatorcontrib><creatorcontrib>Huang, Fanglin</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Deng, Shanyao</creatorcontrib><creatorcontrib>Duan, Shengyu</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><title>Applied Mathematical Modelling</title><description>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated.
An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Dynamical systems</subject><subject>Elongation</subject><subject>Exact solutions</subject><subject>Explicit</subject><subject>Finite element method</subject><subject>Interpolation</subject><subject>Linear systems</subject><subject>Momentum</subject><subject>Momentum corrector</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Numerical dissipation</subject><subject>Parameters</subject><subject>Structural dynamics</subject><subject>Time integration</subject><subject>Truncation errors</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFZ_gLeA510nm252F0-l-AUFLwreQrqZ7aY0SU3Sav-9Ke3Bk4dh5oV55-PJslsKBQXK71eF3JiihJIWUBVA2Vk2AgZ13sLk8_xPfZldhbACgCqpURamlmiz8W6Higx6OaDPnVfoCf5s1rrTkURtkGgbcell1M4Sg3FwinzrOBDjDNq4NaRz3mMXnSd9irW2KD2RVhHr7EmpvZVGd-E6u-jlOuDNKY-zj6fH99lLPn97fp1N53nHyirmCvoSoOU1KxlrOGDVYs1azuu-qSreMC4lQykpbxaqppS3zQL6miMCneCkZ-Ps7jg3vfe1xRDFym29TStFmfzAaM146qLHrs67EDz2YuO1kX4vKIgDW7ESia04sBVQicQ2eR6OHkzn7zR6ETqNtkOlDxCEcvof9y-dmoMA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Tianhao</creator><creator>Huang, Fanglin</creator><creator>Wen, Weibin</creator><creator>Deng, Shanyao</creator><creator>Duan, Shengyu</creator><creator>Fang, Daining</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202110</creationdate><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><author>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Dynamical systems</topic><topic>Elongation</topic><topic>Exact solutions</topic><topic>Explicit</topic><topic>Finite element method</topic><topic>Interpolation</topic><topic>Linear systems</topic><topic>Momentum</topic><topic>Momentum corrector</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Numerical dissipation</topic><topic>Parameters</topic><topic>Structural dynamics</topic><topic>Time integration</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianhao</creatorcontrib><creatorcontrib>Huang, Fanglin</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Deng, Shanyao</creatorcontrib><creatorcontrib>Duan, Shengyu</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianhao</au><au>Huang, Fanglin</au><au>Wen, Weibin</au><au>Deng, Shanyao</au><au>Duan, Shengyu</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-10</date><risdate>2021</risdate><volume>98</volume><spage>287</spage><epage>308</epage><pages>287-308</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated.
An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2021.05.013</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2021-10, Vol.98, p.287-308 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2568031736 |
source | Elsevier; Business Source Ultimate (EBSCOHost); Taylor and Francis Social Sciences and Humanities Collection |
subjects | Accuracy Algorithms Control stability Damping Dynamic response Dynamical systems Elongation Exact solutions Explicit Finite element method Interpolation Linear systems Momentum Momentum corrector Nonlinear dynamics Nonlinear systems Numerical dissipation Parameters Structural dynamics Time integration Truncation errors |
title | An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20higher-order%20explicit%20time%20integration%20method%20with%20momentum%20corrector%20for%20linear%20and%20nonlinear%20dynamics&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liu,%20Tianhao&rft.date=2021-10&rft.volume=98&rft.spage=287&rft.epage=308&rft.pages=287-308&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2021.05.013&rft_dat=%3Cproquest_cross%3E2568031736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568031736&rft_id=info:pmid/&rfr_iscdi=true |