Loading…

An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics

•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling 2021-10, Vol.98, p.287-308
Main Authors: Liu, Tianhao, Huang, Fanglin, Wen, Weibin, Deng, Shanyao, Duan, Shengyu, Fang, Daining
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3
cites cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3
container_end_page 308
container_issue
container_start_page 287
container_title Applied Mathematical Modelling
container_volume 98
creator Liu, Tianhao
Huang, Fanglin
Wen, Weibin
Deng, Shanyao
Duan, Shengyu
Fang, Daining
description •The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.
doi_str_mv 10.1016/j.apm.2021.05.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568031736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X21002547</els_id><sourcerecordid>2568031736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZ_gLeA510nm252F0-l-AUFLwreQrqZ7aY0SU3Sav-9Ke3Bk4dh5oV55-PJslsKBQXK71eF3JiihJIWUBVA2Vk2AgZ13sLk8_xPfZldhbACgCqpURamlmiz8W6Higx6OaDPnVfoCf5s1rrTkURtkGgbcell1M4Sg3FwinzrOBDjDNq4NaRz3mMXnSd9irW2KD2RVhHr7EmpvZVGd-E6u-jlOuDNKY-zj6fH99lLPn97fp1N53nHyirmCvoSoOU1KxlrOGDVYs1azuu-qSreMC4lQykpbxaqppS3zQL6miMCneCkZ-Ps7jg3vfe1xRDFym29TStFmfzAaM146qLHrs67EDz2YuO1kX4vKIgDW7ESia04sBVQicQ2eR6OHkzn7zR6ETqNtkOlDxCEcvof9y-dmoMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568031736</pqid></control><display><type>article</type><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><source>Elsevier</source><source>Business Source Ultimate (EBSCOHost)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</creator><creatorcontrib>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</creatorcontrib><description>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2021.05.013</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Control stability ; Damping ; Dynamic response ; Dynamical systems ; Elongation ; Exact solutions ; Explicit ; Finite element method ; Interpolation ; Linear systems ; Momentum ; Momentum corrector ; Nonlinear dynamics ; Nonlinear systems ; Numerical dissipation ; Parameters ; Structural dynamics ; Time integration ; Truncation errors</subject><ispartof>Applied Mathematical Modelling, 2021-10, Vol.98, p.287-308</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</citedby><cites>FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Tianhao</creatorcontrib><creatorcontrib>Huang, Fanglin</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Deng, Shanyao</creatorcontrib><creatorcontrib>Duan, Shengyu</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><title>Applied Mathematical Modelling</title><description>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Dynamical systems</subject><subject>Elongation</subject><subject>Exact solutions</subject><subject>Explicit</subject><subject>Finite element method</subject><subject>Interpolation</subject><subject>Linear systems</subject><subject>Momentum</subject><subject>Momentum corrector</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Numerical dissipation</subject><subject>Parameters</subject><subject>Structural dynamics</subject><subject>Time integration</subject><subject>Truncation errors</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFZ_gLeA510nm252F0-l-AUFLwreQrqZ7aY0SU3Sav-9Ke3Bk4dh5oV55-PJslsKBQXK71eF3JiihJIWUBVA2Vk2AgZ13sLk8_xPfZldhbACgCqpURamlmiz8W6Higx6OaDPnVfoCf5s1rrTkURtkGgbcell1M4Sg3FwinzrOBDjDNq4NaRz3mMXnSd9irW2KD2RVhHr7EmpvZVGd-E6u-jlOuDNKY-zj6fH99lLPn97fp1N53nHyirmCvoSoOU1KxlrOGDVYs1azuu-qSreMC4lQykpbxaqppS3zQL6miMCneCkZ-Ps7jg3vfe1xRDFym29TStFmfzAaM146qLHrs67EDz2YuO1kX4vKIgDW7ESia04sBVQicQ2eR6OHkzn7zR6ETqNtkOlDxCEcvof9y-dmoMA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Tianhao</creator><creator>Huang, Fanglin</creator><creator>Wen, Weibin</creator><creator>Deng, Shanyao</creator><creator>Duan, Shengyu</creator><creator>Fang, Daining</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202110</creationdate><title>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</title><author>Liu, Tianhao ; Huang, Fanglin ; Wen, Weibin ; Deng, Shanyao ; Duan, Shengyu ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Dynamical systems</topic><topic>Elongation</topic><topic>Exact solutions</topic><topic>Explicit</topic><topic>Finite element method</topic><topic>Interpolation</topic><topic>Linear systems</topic><topic>Momentum</topic><topic>Momentum corrector</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Numerical dissipation</topic><topic>Parameters</topic><topic>Structural dynamics</topic><topic>Time integration</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianhao</creatorcontrib><creatorcontrib>Huang, Fanglin</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Deng, Shanyao</creatorcontrib><creatorcontrib>Duan, Shengyu</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianhao</au><au>Huang, Fanglin</au><au>Wen, Weibin</au><au>Deng, Shanyao</au><au>Duan, Shengyu</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-10</date><risdate>2021</risdate><volume>98</volume><spage>287</spage><epage>308</epage><pages>287-308</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•The improved method achieves higher-order accuracy and controllable numerical dissipation.•The “momentum corrector” term is first introduced to improve accuracy.•High accuracy for nonlinear dynamics and discontinuous loads is illustrated. An improved explicit time integration method is proposed for linear and nonlinear dynamics. Its calculation procedure is obtained with cubic B-spline interpolation approximation and weighted residual method. In the formulation, a momentum corrector is used to improve actual computation accuracy, especially for some special discontinuous loads. Analytical solutions of the local truncation errors, algorithmic damping and period elongation have been deduced to obtain the influence of algorithmic parameters on these basis algorithmic properties. The proposed method possesses at least second-order accuracy and can achieve at most third-order accuracy for no physical damping case. With free algorithmic parameters, the proposed method has controllable stability and numerical dissipation. Some demonstrative numerical examples are tested to confirm high efficiency of the proposed method for a variety of dynamic problems such as, dynamic response analysis of linear systems under various representative applied loads, finite element analysis (FEA) for dynamic response of engineering structures, and nonlinear dynamic analysis for strong nonlinear system.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2021.05.013</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2021-10, Vol.98, p.287-308
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2568031736
source Elsevier; Business Source Ultimate (EBSCOHost); Taylor and Francis Social Sciences and Humanities Collection
subjects Accuracy
Algorithms
Control stability
Damping
Dynamic response
Dynamical systems
Elongation
Exact solutions
Explicit
Finite element method
Interpolation
Linear systems
Momentum
Momentum corrector
Nonlinear dynamics
Nonlinear systems
Numerical dissipation
Parameters
Structural dynamics
Time integration
Truncation errors
title An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20higher-order%20explicit%20time%20integration%20method%20with%20momentum%20corrector%20for%20linear%20and%20nonlinear%20dynamics&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liu,%20Tianhao&rft.date=2021-10&rft.volume=98&rft.spage=287&rft.epage=308&rft.pages=287-308&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2021.05.013&rft_dat=%3Cproquest_cross%3E2568031736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-d0f2009673233860e59e739667f8556836aa3eaa168bd711698b0f76ee014e4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568031736&rft_id=info:pmid/&rfr_iscdi=true