Loading…

Numerical solutions to Helmholtz equation of anisotropic functionally graded materials

In this paper, interior 2D-BVPs for anisotropic FGMs governed by the Helmholtz equation with Dirichlet and Neumann boundary conditions are considered. The governing equation involves diffusivity and wave number coefficients which are spatially varying. The anisotropy of the material is presented in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-10, Vol.1341 (8), p.82012
Main Authors: Paharuddin, Sakka, Taba, P, Toaha, S, Azis, M I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3
cites cdi_FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3
container_end_page
container_issue 8
container_start_page 82012
container_title Journal of physics. Conference series
container_volume 1341
creator Paharuddin
Sakka
Taba, P
Toaha, S
Azis, M I
description In this paper, interior 2D-BVPs for anisotropic FGMs governed by the Helmholtz equation with Dirichlet and Neumann boundary conditions are considered. The governing equation involves diffusivity and wave number coefficients which are spatially varying. The anisotropy of the material is presented in the diffusivity coefficient. And the inhomogeneity is described by both diffusivity and wave number. Three types of the gradation function considered are quadratic, exponential and trigonometric functions. A technique of transforming the variable coefficient governing equation to a constant coefficient equation is utilized for deriving a boundary integral equation. And a standard BEM is constructed from the boundary integral equation to find numerical solutions. Some particular examples of BVPs are solved to illustrate the application of the BEM. The results show the accuracy of the BEM solutions, especially for large wave numbers. They also show coherence between the flow vectors and scattering solutions, and the effect of the anisotropy and inhomogeneity of the material on the BEM solutions.
doi_str_mv 10.1088/1742-6596/1341/8/082012
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2568051296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568051296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDFjiHOKfxLGPqAKKVMEFuFq2Y0OqpE7t5FCeHkepypG97Gp3ZrT6ALjF6B4jznNcFSRjpWA5pgXOeY44QZicgcXpcn6aOb8EVzFuEaKpqgX4fB07GxqjWhh9Ow6N30U4eLi2bfft2-EH2v2opjX0DqpdE_0QfN8Y6MadmfaqbQ_wK6ja1rBTQwpTbbwGFy41e3PsS_Dx9Pi-Wmebt-eX1cMmM0RQkqlCV4JarIWpa6QNQsJUJWLWca0RFhY7rJUSzBJOC0tYJXjBk04rxwV3dAnu5tw--P1o4yC3fgzppyhJyTgqMREsqapZZYKPMVgn-9B0KhwkRnKCKCc8ckIlJ4iSyxlictLZ2fj-L_o_1y9r53WI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568051296</pqid></control><display><type>article</type><title>Numerical solutions to Helmholtz equation of anisotropic functionally graded materials</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Paharuddin ; Sakka ; Taba, P ; Toaha, S ; Azis, M I</creator><creatorcontrib>Paharuddin ; Sakka ; Taba, P ; Toaha, S ; Azis, M I</creatorcontrib><description>In this paper, interior 2D-BVPs for anisotropic FGMs governed by the Helmholtz equation with Dirichlet and Neumann boundary conditions are considered. The governing equation involves diffusivity and wave number coefficients which are spatially varying. The anisotropy of the material is presented in the diffusivity coefficient. And the inhomogeneity is described by both diffusivity and wave number. Three types of the gradation function considered are quadratic, exponential and trigonometric functions. A technique of transforming the variable coefficient governing equation to a constant coefficient equation is utilized for deriving a boundary integral equation. And a standard BEM is constructed from the boundary integral equation to find numerical solutions. Some particular examples of BVPs are solved to illustrate the application of the BEM. The results show the accuracy of the BEM solutions, especially for large wave numbers. They also show coherence between the flow vectors and scattering solutions, and the effect of the anisotropy and inhomogeneity of the material on the BEM solutions.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1341/8/082012</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anisotropy ; Boundary conditions ; Boundary integral method ; Coefficients ; Coherent scattering ; Diffusivity ; Dirichlet problem ; Functionally gradient materials ; Helmholtz equations ; Inhomogeneity ; Integral equations ; Physics ; Trigonometric functions ; Wavelengths</subject><ispartof>Journal of physics. Conference series, 2019-10, Vol.1341 (8), p.82012</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3</citedby><cites>FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2568051296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Paharuddin</creatorcontrib><creatorcontrib>Sakka</creatorcontrib><creatorcontrib>Taba, P</creatorcontrib><creatorcontrib>Toaha, S</creatorcontrib><creatorcontrib>Azis, M I</creatorcontrib><title>Numerical solutions to Helmholtz equation of anisotropic functionally graded materials</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, interior 2D-BVPs for anisotropic FGMs governed by the Helmholtz equation with Dirichlet and Neumann boundary conditions are considered. The governing equation involves diffusivity and wave number coefficients which are spatially varying. The anisotropy of the material is presented in the diffusivity coefficient. And the inhomogeneity is described by both diffusivity and wave number. Three types of the gradation function considered are quadratic, exponential and trigonometric functions. A technique of transforming the variable coefficient governing equation to a constant coefficient equation is utilized for deriving a boundary integral equation. And a standard BEM is constructed from the boundary integral equation to find numerical solutions. Some particular examples of BVPs are solved to illustrate the application of the BEM. The results show the accuracy of the BEM solutions, especially for large wave numbers. They also show coherence between the flow vectors and scattering solutions, and the effect of the anisotropy and inhomogeneity of the material on the BEM solutions.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Boundary integral method</subject><subject>Coefficients</subject><subject>Coherent scattering</subject><subject>Diffusivity</subject><subject>Dirichlet problem</subject><subject>Functionally gradient materials</subject><subject>Helmholtz equations</subject><subject>Inhomogeneity</subject><subject>Integral equations</subject><subject>Physics</subject><subject>Trigonometric functions</subject><subject>Wavelengths</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkM1OwzAQhC0EEqXwDFjiHOKfxLGPqAKKVMEFuFq2Y0OqpE7t5FCeHkepypG97Gp3ZrT6ALjF6B4jznNcFSRjpWA5pgXOeY44QZicgcXpcn6aOb8EVzFuEaKpqgX4fB07GxqjWhh9Ow6N30U4eLi2bfft2-EH2v2opjX0DqpdE_0QfN8Y6MadmfaqbQ_wK6ja1rBTQwpTbbwGFy41e3PsS_Dx9Pi-Wmebt-eX1cMmM0RQkqlCV4JarIWpa6QNQsJUJWLWca0RFhY7rJUSzBJOC0tYJXjBk04rxwV3dAnu5tw--P1o4yC3fgzppyhJyTgqMREsqapZZYKPMVgn-9B0KhwkRnKCKCc8ckIlJ4iSyxlictLZ2fj-L_o_1y9r53WI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Paharuddin</creator><creator>Sakka</creator><creator>Taba, P</creator><creator>Toaha, S</creator><creator>Azis, M I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191001</creationdate><title>Numerical solutions to Helmholtz equation of anisotropic functionally graded materials</title><author>Paharuddin ; Sakka ; Taba, P ; Toaha, S ; Azis, M I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Boundary integral method</topic><topic>Coefficients</topic><topic>Coherent scattering</topic><topic>Diffusivity</topic><topic>Dirichlet problem</topic><topic>Functionally gradient materials</topic><topic>Helmholtz equations</topic><topic>Inhomogeneity</topic><topic>Integral equations</topic><topic>Physics</topic><topic>Trigonometric functions</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paharuddin</creatorcontrib><creatorcontrib>Sakka</creatorcontrib><creatorcontrib>Taba, P</creatorcontrib><creatorcontrib>Toaha, S</creatorcontrib><creatorcontrib>Azis, M I</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paharuddin</au><au>Sakka</au><au>Taba, P</au><au>Toaha, S</au><au>Azis, M I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions to Helmholtz equation of anisotropic functionally graded materials</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>1341</volume><issue>8</issue><spage>82012</spage><pages>82012-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, interior 2D-BVPs for anisotropic FGMs governed by the Helmholtz equation with Dirichlet and Neumann boundary conditions are considered. The governing equation involves diffusivity and wave number coefficients which are spatially varying. The anisotropy of the material is presented in the diffusivity coefficient. And the inhomogeneity is described by both diffusivity and wave number. Three types of the gradation function considered are quadratic, exponential and trigonometric functions. A technique of transforming the variable coefficient governing equation to a constant coefficient equation is utilized for deriving a boundary integral equation. And a standard BEM is constructed from the boundary integral equation to find numerical solutions. Some particular examples of BVPs are solved to illustrate the application of the BEM. The results show the accuracy of the BEM solutions, especially for large wave numbers. They also show coherence between the flow vectors and scattering solutions, and the effect of the anisotropy and inhomogeneity of the material on the BEM solutions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1341/8/082012</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-10, Vol.1341 (8), p.82012
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2568051296
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Anisotropy
Boundary conditions
Boundary integral method
Coefficients
Coherent scattering
Diffusivity
Dirichlet problem
Functionally gradient materials
Helmholtz equations
Inhomogeneity
Integral equations
Physics
Trigonometric functions
Wavelengths
title Numerical solutions to Helmholtz equation of anisotropic functionally graded materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20to%20Helmholtz%20equation%20of%20anisotropic%20functionally%20graded%20materials&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Paharuddin&rft.date=2019-10-01&rft.volume=1341&rft.issue=8&rft.spage=82012&rft.pages=82012-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1341/8/082012&rft_dat=%3Cproquest_iop_j%3E2568051296%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-a4b793e1b9cdd0bc009c7506ef8bb019e1f1baa96e2834e2679848bc0baf898f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568051296&rft_id=info:pmid/&rfr_iscdi=true