Loading…
Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems
Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this as...
Saved in:
Published in: | Numerical linear algebra with applications 2021-10, Vol.28 (5), p.n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583 |
---|---|
cites | cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | Numerical linear algebra with applications |
container_volume | 28 |
creator | Pultarová, Ivana Ladecký, Martin |
description | Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization. |
doi_str_mv | 10.1002/nla.2382 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568086152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568086152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqUgcYRIbNik2E6cOMuq4k-qYFPWkROPK1epXeykVcWGI3CEnCVH4SQ4hC2bmdHMN_NGLwiuMZphhMidrvmMxIycBBOM8jzCFKWnQ52hiMaEngcXzm0QQinN40nwsTqY788vpwSIcN1yy3UDvixNq4ULGxMqLdReiZbXIag16D2vW3B9Z2Tf7SxUxs8bZbRfkkqrBkKoYQu6CbkWfTf2-k4oKcGCriDcWVN6xF0GZ5LXDq7-8jR4e7hfLZ6i5evj82K-jCqSxyRKfWBJUg0_x4wLwRKWyJwTxjhJy4ohXFapxBg4yIRnmCQ8p5mQlMiMURZPg5vxrhd-9783xca0VnvJgtCUIZZiSjx1O1KVNc5ZkMXOqi23xwKjYrC28NYWg7UejUb0oGo4_ssVL8v5L_8DbWWAcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568086152</pqid></control><display><type>article</type><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pultarová, Ivana ; Ladecký, Martin</creator><creatorcontrib>Pultarová, Ivana ; Ladecký, Martin</creatorcontrib><description>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2382</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>algebraic multilevel method ; Discretization ; eigenvalue bounds ; Eigenvalues ; Elliptic functions ; Finite difference method ; finite element method ; Linear equations ; Matrices (mathematics) ; Numerical methods ; Partial differential equations ; preconditioning ; stochastic Galerkin finite element method ; Upper bounds</subject><ispartof>Numerical linear algebra with applications, 2021-10, Vol.28 (5), p.n/a</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</citedby><cites>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</cites><orcidid>0000-0003-0460-9270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><title>Numerical linear algebra with applications</title><description>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</description><subject>algebraic multilevel method</subject><subject>Discretization</subject><subject>eigenvalue bounds</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Finite difference method</subject><subject>finite element method</subject><subject>Linear equations</subject><subject>Matrices (mathematics)</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>preconditioning</subject><subject>stochastic Galerkin finite element method</subject><subject>Upper bounds</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqUgcYRIbNik2E6cOMuq4k-qYFPWkROPK1epXeykVcWGI3CEnCVH4SQ4hC2bmdHMN_NGLwiuMZphhMidrvmMxIycBBOM8jzCFKWnQ52hiMaEngcXzm0QQinN40nwsTqY788vpwSIcN1yy3UDvixNq4ULGxMqLdReiZbXIag16D2vW3B9Z2Tf7SxUxs8bZbRfkkqrBkKoYQu6CbkWfTf2-k4oKcGCriDcWVN6xF0GZ5LXDq7-8jR4e7hfLZ6i5evj82K-jCqSxyRKfWBJUg0_x4wLwRKWyJwTxjhJy4ohXFapxBg4yIRnmCQ8p5mQlMiMURZPg5vxrhd-9783xca0VnvJgtCUIZZiSjx1O1KVNc5ZkMXOqi23xwKjYrC28NYWg7UejUb0oGo4_ssVL8v5L_8DbWWAcw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Pultarová, Ivana</creator><creator>Ladecký, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid></search><sort><creationdate>202110</creationdate><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><author>Pultarová, Ivana ; Ladecký, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>algebraic multilevel method</topic><topic>Discretization</topic><topic>eigenvalue bounds</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Finite difference method</topic><topic>finite element method</topic><topic>Linear equations</topic><topic>Matrices (mathematics)</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>preconditioning</topic><topic>stochastic Galerkin finite element method</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pultarová, Ivana</au><au>Ladecký, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2021-10</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2382</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2021-10, Vol.28 (5), p.n/a |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_journals_2568086152 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | algebraic multilevel method Discretization eigenvalue bounds Eigenvalues Elliptic functions Finite difference method finite element method Linear equations Matrices (mathematics) Numerical methods Partial differential equations preconditioning stochastic Galerkin finite element method Upper bounds |
title | Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90sided%20guaranteed%20bounds%20to%20individual%20eigenvalues%C2%A0of%C2%A0preconditioned%20finite%20element%20and%C2%A0finite%C2%A0difference%20problems&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Pultarov%C3%A1,%20Ivana&rft.date=2021-10&rft.volume=28&rft.issue=5&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2382&rft_dat=%3Cproquest_cross%3E2568086152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568086152&rft_id=info:pmid/&rfr_iscdi=true |