Loading…

Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems

Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this as...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2021-10, Vol.28 (5), p.n/a
Main Authors: Pultarová, Ivana, Ladecký, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583
cites cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583
container_end_page n/a
container_issue 5
container_start_page
container_title Numerical linear algebra with applications
container_volume 28
creator Pultarová, Ivana
Ladecký, Martin
description Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.
doi_str_mv 10.1002/nla.2382
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568086152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568086152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqUgcYRIbNik2E6cOMuq4k-qYFPWkROPK1epXeykVcWGI3CEnCVH4SQ4hC2bmdHMN_NGLwiuMZphhMidrvmMxIycBBOM8jzCFKWnQ52hiMaEngcXzm0QQinN40nwsTqY788vpwSIcN1yy3UDvixNq4ULGxMqLdReiZbXIag16D2vW3B9Z2Tf7SxUxs8bZbRfkkqrBkKoYQu6CbkWfTf2-k4oKcGCriDcWVN6xF0GZ5LXDq7-8jR4e7hfLZ6i5evj82K-jCqSxyRKfWBJUg0_x4wLwRKWyJwTxjhJy4ohXFapxBg4yIRnmCQ8p5mQlMiMURZPg5vxrhd-9783xca0VnvJgtCUIZZiSjx1O1KVNc5ZkMXOqi23xwKjYrC28NYWg7UejUb0oGo4_ssVL8v5L_8DbWWAcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568086152</pqid></control><display><type>article</type><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pultarová, Ivana ; Ladecký, Martin</creator><creatorcontrib>Pultarová, Ivana ; Ladecký, Martin</creatorcontrib><description>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2382</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>algebraic multilevel method ; Discretization ; eigenvalue bounds ; Eigenvalues ; Elliptic functions ; Finite difference method ; finite element method ; Linear equations ; Matrices (mathematics) ; Numerical methods ; Partial differential equations ; preconditioning ; stochastic Galerkin finite element method ; Upper bounds</subject><ispartof>Numerical linear algebra with applications, 2021-10, Vol.28 (5), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</citedby><cites>FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</cites><orcidid>0000-0003-0460-9270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><title>Numerical linear algebra with applications</title><description>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</description><subject>algebraic multilevel method</subject><subject>Discretization</subject><subject>eigenvalue bounds</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Finite difference method</subject><subject>finite element method</subject><subject>Linear equations</subject><subject>Matrices (mathematics)</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>preconditioning</subject><subject>stochastic Galerkin finite element method</subject><subject>Upper bounds</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqUgcYRIbNik2E6cOMuq4k-qYFPWkROPK1epXeykVcWGI3CEnCVH4SQ4hC2bmdHMN_NGLwiuMZphhMidrvmMxIycBBOM8jzCFKWnQ52hiMaEngcXzm0QQinN40nwsTqY788vpwSIcN1yy3UDvixNq4ULGxMqLdReiZbXIag16D2vW3B9Z2Tf7SxUxs8bZbRfkkqrBkKoYQu6CbkWfTf2-k4oKcGCriDcWVN6xF0GZ5LXDq7-8jR4e7hfLZ6i5evj82K-jCqSxyRKfWBJUg0_x4wLwRKWyJwTxjhJy4ohXFapxBg4yIRnmCQ8p5mQlMiMURZPg5vxrhd-9783xca0VnvJgtCUIZZiSjx1O1KVNc5ZkMXOqi23xwKjYrC28NYWg7UejUb0oGo4_ssVL8v5L_8DbWWAcw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Pultarová, Ivana</creator><creator>Ladecký, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid></search><sort><creationdate>202110</creationdate><title>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</title><author>Pultarová, Ivana ; Ladecký, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>algebraic multilevel method</topic><topic>Discretization</topic><topic>eigenvalue bounds</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Finite difference method</topic><topic>finite element method</topic><topic>Linear equations</topic><topic>Matrices (mathematics)</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>preconditioning</topic><topic>stochastic Galerkin finite element method</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pultarová, Ivana</au><au>Ladecký, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2021-10</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Numerical methods for elliptic partial differential equations usually lead to systems of linear equations with sparse, symmetric, and positive definite matrices. In many methods, these matrices can be obtained as sums of local symmetric positive semidefinite matrices. In this article, we use this assumption and introduce a method that provides guaranteed lower and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the method for preconditioners arising from the same discretization problem but with simplified coefficients. The method uses solely the data over the solution domain and local connections between the degrees of freedom defined by the discretization.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2382</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2021-10, Vol.28 (5), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_2568086152
source Wiley-Blackwell Read & Publish Collection
subjects algebraic multilevel method
Discretization
eigenvalue bounds
Eigenvalues
Elliptic functions
Finite difference method
finite element method
Linear equations
Matrices (mathematics)
Numerical methods
Partial differential equations
preconditioning
stochastic Galerkin finite element method
Upper bounds
title Two‐sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90sided%20guaranteed%20bounds%20to%20individual%20eigenvalues%C2%A0of%C2%A0preconditioned%20finite%20element%20and%C2%A0finite%C2%A0difference%20problems&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Pultarov%C3%A1,%20Ivana&rft.date=2021-10&rft.volume=28&rft.issue=5&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2382&rft_dat=%3Cproquest_cross%3E2568086152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2932-6932844c000638add8484f9a288a26bc801bc6f11eaef4a7124a957df52f78583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568086152&rft_id=info:pmid/&rfr_iscdi=true