Loading…
Application research of a data stream clustering algorithm in network security defense
The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window tech...
Saved in:
Published in: | Journal of physics. Conference series 2019-12, Vol.1423 (1), p.12027 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2747-2b3f0b3533f51ef53d61511216c1ef096b3accc3e817cf2eb6359903c62de9623 |
container_end_page | |
container_issue | 1 |
container_start_page | 12027 |
container_title | Journal of physics. Conference series |
container_volume | 1423 |
creator | Zhu, Canshi Wang, Xiaoyang Zhu, Lin |
description | The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window technology, data stream mining technology and fusion technology with intrusion detection system, a data flow clustering algorithm based on attenuated sliding window is designed to improve and optimize the feature pattern extraction method of intrusion detection system to solve the dynamics of intrusion detection system. Through algorithm design, algorithm application and intrusion detection system simulation verification, the feasibility and accuracy of the algorithm and the optimized intrusion detection system are proved. |
doi_str_mv | 10.1088/1742-6596/1423/1/012027 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2568380203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568380203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-2b3f0b3533f51ef53d61511216c1ef096b3accc3e817cf2eb6359903c62de9623</originalsourceid><addsrcrecordid>eNqFkFtLwzAUx4MoOKefwYBvQm0ua9o-juGVgYKX15CmJ1tn19QkRfbtbalMBMHzcm7_cw7nh9A5JVeUZFlM0xmLRJKLmM4Yj2lMKCMsPUCTfedwH2fZMTrxfkMI7y2doLd529aVVqGyDXbgQTm9xtZghUsVFPbBgdpiXXc-gKuaFVb1yroqrLe4anAD4dO6d-xBd31xh0sw0Hg4RUdG1R7Ovv0Uvd5cvyzuouXj7f1ivow0S2dpxApuSMETzk1CwSS8FDShlFGh-5TkouBKa80ho6k2DArBkzwnXAtWQi4Yn6KLcW_r7EcHPsiN7VzTn5QsERnPCOs_naJ0VGlnvXdgZOuqrXI7SYkcIMoBjxxQyQGipHKE2E9ejpOVbX9WPzwtnn8LZVuaXsz_EP934guxX4Fe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568380203</pqid></control><display><type>article</type><title>Application research of a data stream clustering algorithm in network security defense</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Canshi ; Wang, Xiaoyang ; Zhu, Lin</creator><creatorcontrib>Zhu, Canshi ; Wang, Xiaoyang ; Zhu, Lin</creatorcontrib><description>The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window technology, data stream mining technology and fusion technology with intrusion detection system, a data flow clustering algorithm based on attenuated sliding window is designed to improve and optimize the feature pattern extraction method of intrusion detection system to solve the dynamics of intrusion detection system. Through algorithm design, algorithm application and intrusion detection system simulation verification, the feasibility and accuracy of the algorithm and the optimized intrusion detection system are proved.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1423/1/012027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Clustering ; Data mining ; Data transmission ; Feature extraction ; Intrusion detection systems ; Physics ; Security management ; Sliding</subject><ispartof>Journal of physics. Conference series, 2019-12, Vol.1423 (1), p.12027</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2747-2b3f0b3533f51ef53d61511216c1ef096b3accc3e817cf2eb6359903c62de9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2568380203?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhu, Canshi</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><title>Application research of a data stream clustering algorithm in network security defense</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window technology, data stream mining technology and fusion technology with intrusion detection system, a data flow clustering algorithm based on attenuated sliding window is designed to improve and optimize the feature pattern extraction method of intrusion detection system to solve the dynamics of intrusion detection system. Through algorithm design, algorithm application and intrusion detection system simulation verification, the feasibility and accuracy of the algorithm and the optimized intrusion detection system are proved.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Data transmission</subject><subject>Feature extraction</subject><subject>Intrusion detection systems</subject><subject>Physics</subject><subject>Security management</subject><subject>Sliding</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFtLwzAUx4MoOKefwYBvQm0ua9o-juGVgYKX15CmJ1tn19QkRfbtbalMBMHzcm7_cw7nh9A5JVeUZFlM0xmLRJKLmM4Yj2lMKCMsPUCTfedwH2fZMTrxfkMI7y2doLd529aVVqGyDXbgQTm9xtZghUsVFPbBgdpiXXc-gKuaFVb1yroqrLe4anAD4dO6d-xBd31xh0sw0Hg4RUdG1R7Ovv0Uvd5cvyzuouXj7f1ivow0S2dpxApuSMETzk1CwSS8FDShlFGh-5TkouBKa80ho6k2DArBkzwnXAtWQi4Yn6KLcW_r7EcHPsiN7VzTn5QsERnPCOs_naJ0VGlnvXdgZOuqrXI7SYkcIMoBjxxQyQGipHKE2E9ejpOVbX9WPzwtnn8LZVuaXsz_EP934guxX4Fe</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhu, Canshi</creator><creator>Wang, Xiaoyang</creator><creator>Zhu, Lin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191201</creationdate><title>Application research of a data stream clustering algorithm in network security defense</title><author>Zhu, Canshi ; Wang, Xiaoyang ; Zhu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-2b3f0b3533f51ef53d61511216c1ef096b3accc3e817cf2eb6359903c62de9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Data transmission</topic><topic>Feature extraction</topic><topic>Intrusion detection systems</topic><topic>Physics</topic><topic>Security management</topic><topic>Sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Canshi</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Canshi</au><au>Wang, Xiaoyang</au><au>Zhu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application research of a data stream clustering algorithm in network security defense</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>1423</volume><issue>1</issue><spage>12027</spage><pages>12027-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The traditional intrusion detection system feature model is based on static data mining. Its mining algorithm relies on too many assumptions, which makes it difficult for intrusion detection systems to adapt to dynamic and real-time system detection requirements. Using attenuated sliding window technology, data stream mining technology and fusion technology with intrusion detection system, a data flow clustering algorithm based on attenuated sliding window is designed to improve and optimize the feature pattern extraction method of intrusion detection system to solve the dynamics of intrusion detection system. Through algorithm design, algorithm application and intrusion detection system simulation verification, the feasibility and accuracy of the algorithm and the optimized intrusion detection system are proved.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1423/1/012027</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-12, Vol.1423 (1), p.12027 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2568380203 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Algorithms Clustering Data mining Data transmission Feature extraction Intrusion detection systems Physics Security management Sliding |
title | Application research of a data stream clustering algorithm in network security defense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20research%20of%20a%20data%20stream%20clustering%20algorithm%20in%20network%20security%20defense&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhu,%20Canshi&rft.date=2019-12-01&rft.volume=1423&rft.issue=1&rft.spage=12027&rft.pages=12027-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1423/1/012027&rft_dat=%3Cproquest_iop_j%3E2568380203%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2747-2b3f0b3533f51ef53d61511216c1ef096b3accc3e817cf2eb6359903c62de9623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568380203&rft_id=info:pmid/&rfr_iscdi=true |