Loading…

Corrosion resistance hydroxyapatite assessment and tricalcium beta phosphate coating, deposited on stainless steel low carbon vacuum melted

316 stainless steel low carbon vacuum melted, used for surgical implants, has good corrosion resistance, but it is degraded in the body fluids presence, generating problems for the receiver, therefore it is necessary to apply coatings that improve their biocompatibility. In the current work hydroxya...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-11, Vol.1386 (1), p.12022
Main Authors: Rojas, C, Vera, E, Aperador, W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:316 stainless steel low carbon vacuum melted, used for surgical implants, has good corrosion resistance, but it is degraded in the body fluids presence, generating problems for the receiver, therefore it is necessary to apply coatings that improve their biocompatibility. In the current work hydroxyapatite and tricalcium beta phosphate coatings were applied on 316 stainless steel substrates, by the radio frequency magnetron sputtering technique, with a 2 m thickness for possible biomedical applications. The coatings characterization was performed, using scanning electron microscopy, found the Ca/P ratio of 1.639 for hydroxyapatite and 1.515 for phosphate, the friction coefficient was additionally evaluated by pin on disk tribometer, with a lower coefficient of beta tricalcium phosphate in relation to hydroxyapatite. The corrosion evaluation was carried out using the electrochemical polarization technique Tafel, in Ringer lactate, as simulated biological fluid. It was observed that the coatings improve the steel electrochemical behavior and between the two coatings the one that best behaves is the tricalcium beta phosphate, with a corrosion low rate.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1386/1/012022