Loading…
Mathematical Modeling of Cancer Growth Process: A Review
Although cancer is a leading cause of death, a little is known about the mechanism of its growth and destruction. Mathematical models explaining these mechanisms are crucial to predict the behaviour of cancer cells proliferation. Perusal of the literature dealing with mathematical modelling of cance...
Saved in:
Published in: | Journal of physics. Conference series 2019-11, Vol.1366 (1), p.12018 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23 |
container_end_page | |
container_issue | 1 |
container_start_page | 12018 |
container_title | Journal of physics. Conference series |
container_volume | 1366 |
creator | Tabassum, Shabana Rosli, Norhayati Binti Binti Mazalan, Mazma Sayahidatul Ayuni |
description | Although cancer is a leading cause of death, a little is known about the mechanism of its growth and destruction. Mathematical models explaining these mechanisms are crucial to predict the behaviour of cancer cells proliferation. Perusal of the literature dealing with mathematical modelling of cancer initiation, proliferation and metastases is abundant. Mathematical models to simulate the growth rate of the cancer cells have been derived from both deterministic and stochastic considerations. Early model of tumor growth by diffusion was first introduced and then set the scene for many later mathematical models for solid tumors. In this article we review the deterministic and stochastic models that have been developing to discuss the tumor growth initiation and proliferation. The findings and interpretations are summarized, and the main research issues are highlighted. |
doi_str_mv | 10.1088/1742-6596/1366/1/012018 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2568454817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568454817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23</originalsourceid><addsrcrecordid>eNqFkG9LwzAQxoMoOKefwYLvhNpckzSJ70bRqWw4_PM6ZGnqOralJp3Db29LZSII3ou7g3ueO-6H0DngK8BCJMBpGmdMZgmQrE0JhhSDOECD_eRw3wtxjE5CWGJM2uADJKa6Wdi1biqjV9HUFXZVbd4iV0a53hjro7F3u2YRzbwzNoTraBQ92Y_K7k7RUalXwZ591yF6vb15ye_iyeP4Ph9NYkOBNDEHK00BJdeGUq4ZY2lJDAYtZUHsXEqghW7f0JgzyAwXsoDMguTEUo3nKRmii35v7d371oZGLd3Wb9qTKmWZoIwK4K2K9yrjXQjelqr21Vr7TwVYdZhUB0B1MFSHSYHqMbVO0jsrV_-s_t91-YfrYZY__xaquijJFzn_dQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568454817</pqid></control><display><type>article</type><title>Mathematical Modeling of Cancer Growth Process: A Review</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Tabassum, Shabana ; Rosli, Norhayati Binti ; Binti Mazalan, Mazma Sayahidatul Ayuni</creator><creatorcontrib>Tabassum, Shabana ; Rosli, Norhayati Binti ; Binti Mazalan, Mazma Sayahidatul Ayuni</creatorcontrib><description>Although cancer is a leading cause of death, a little is known about the mechanism of its growth and destruction. Mathematical models explaining these mechanisms are crucial to predict the behaviour of cancer cells proliferation. Perusal of the literature dealing with mathematical modelling of cancer initiation, proliferation and metastases is abundant. Mathematical models to simulate the growth rate of the cancer cells have been derived from both deterministic and stochastic considerations. Early model of tumor growth by diffusion was first introduced and then set the scene for many later mathematical models for solid tumors. In this article we review the deterministic and stochastic models that have been developing to discuss the tumor growth initiation and proliferation. The findings and interpretations are summarized, and the main research issues are highlighted.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1366/1/012018</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cancer ; Mathematical analysis ; Mathematical models ; Physics ; Stochastic models ; Tumors</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1366 (1), p.12018</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23</citedby><cites>FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2568454817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Tabassum, Shabana</creatorcontrib><creatorcontrib>Rosli, Norhayati Binti</creatorcontrib><creatorcontrib>Binti Mazalan, Mazma Sayahidatul Ayuni</creatorcontrib><title>Mathematical Modeling of Cancer Growth Process: A Review</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Although cancer is a leading cause of death, a little is known about the mechanism of its growth and destruction. Mathematical models explaining these mechanisms are crucial to predict the behaviour of cancer cells proliferation. Perusal of the literature dealing with mathematical modelling of cancer initiation, proliferation and metastases is abundant. Mathematical models to simulate the growth rate of the cancer cells have been derived from both deterministic and stochastic considerations. Early model of tumor growth by diffusion was first introduced and then set the scene for many later mathematical models for solid tumors. In this article we review the deterministic and stochastic models that have been developing to discuss the tumor growth initiation and proliferation. The findings and interpretations are summarized, and the main research issues are highlighted.</description><subject>Cancer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Stochastic models</subject><subject>Tumors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkG9LwzAQxoMoOKefwYLvhNpckzSJ70bRqWw4_PM6ZGnqOralJp3Db29LZSII3ou7g3ueO-6H0DngK8BCJMBpGmdMZgmQrE0JhhSDOECD_eRw3wtxjE5CWGJM2uADJKa6Wdi1biqjV9HUFXZVbd4iV0a53hjro7F3u2YRzbwzNoTraBQ92Y_K7k7RUalXwZ591yF6vb15ye_iyeP4Ph9NYkOBNDEHK00BJdeGUq4ZY2lJDAYtZUHsXEqghW7f0JgzyAwXsoDMguTEUo3nKRmii35v7d371oZGLd3Wb9qTKmWZoIwK4K2K9yrjXQjelqr21Vr7TwVYdZhUB0B1MFSHSYHqMbVO0jsrV_-s_t91-YfrYZY__xaquijJFzn_dQw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tabassum, Shabana</creator><creator>Rosli, Norhayati Binti</creator><creator>Binti Mazalan, Mazma Sayahidatul Ayuni</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Mathematical Modeling of Cancer Growth Process: A Review</title><author>Tabassum, Shabana ; Rosli, Norhayati Binti ; Binti Mazalan, Mazma Sayahidatul Ayuni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Stochastic models</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabassum, Shabana</creatorcontrib><creatorcontrib>Rosli, Norhayati Binti</creatorcontrib><creatorcontrib>Binti Mazalan, Mazma Sayahidatul Ayuni</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabassum, Shabana</au><au>Rosli, Norhayati Binti</au><au>Binti Mazalan, Mazma Sayahidatul Ayuni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Cancer Growth Process: A Review</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1366</volume><issue>1</issue><spage>12018</spage><pages>12018-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Although cancer is a leading cause of death, a little is known about the mechanism of its growth and destruction. Mathematical models explaining these mechanisms are crucial to predict the behaviour of cancer cells proliferation. Perusal of the literature dealing with mathematical modelling of cancer initiation, proliferation and metastases is abundant. Mathematical models to simulate the growth rate of the cancer cells have been derived from both deterministic and stochastic considerations. Early model of tumor growth by diffusion was first introduced and then set the scene for many later mathematical models for solid tumors. In this article we review the deterministic and stochastic models that have been developing to discuss the tumor growth initiation and proliferation. The findings and interpretations are summarized, and the main research issues are highlighted.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1366/1/012018</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-11, Vol.1366 (1), p.12018 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2568454817 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access) |
subjects | Cancer Mathematical analysis Mathematical models Physics Stochastic models Tumors |
title | Mathematical Modeling of Cancer Growth Process: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Cancer%20Growth%20Process:%20A%20Review&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tabassum,%20Shabana&rft.date=2019-11-01&rft.volume=1366&rft.issue=1&rft.spage=12018&rft.pages=12018-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1366/1/012018&rft_dat=%3Cproquest_iop_j%3E2568454817%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-71e9cd1f7ac447a5552f3c01a99d3eb9914da088a07516c789d16e1973e4a0b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568454817&rft_id=info:pmid/&rfr_iscdi=true |