Loading…
Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study
In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dy...
Saved in:
Published in: | Theoretical chemistry accounts 2021-09, Vol.140 (9), Article 132 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Theoretical chemistry accounts |
container_volume | 140 |
creator | Singh, Chandrodai Pratap Samal, Pragnya Paramita Krishnamurty, Sailaja |
description | In this article, thermal stability of doped Al
13
nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ
rms,
MSD and ε
pro.
The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length. |
doi_str_mv | 10.1007/s00214-021-02829-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568660170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568660170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMQf8SOKEDcpTKnQpEpt1Yzs0lRMXOxny73FJJTak-xrO-a50ELqk5JoSIm4CIYymSRyxC1Ym4gjNaMpZwhhPjw93UdDPU3QWwpZEPcvEDL2vN8a3YHHooWps04_Y1Rg6bDrtNkZ7sHbE2u2MxmCHtumGFnfQOWWH0BsfbjHg-9XbQwQMejxHJzXYYC4Oe44-nh7Xi5dkuXp-XdwtE8Vp2SdAdV0IqECDqPKUAUuLDIRSnBtgSkBBCUBFWV1zMFzlRJRZLE4qRYUQfI6uJu7Ou-_BhF5u3eC7-FKyLC_ynFBBoopNKuVdCN7UcuebFvwoKZH73OSUm4xD_uYm92g-mUIUd1_G_6H_cf0AVGpwcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568660170</pqid></control><display><type>article</type><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><source>Springer Nature</source><creator>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</creator><creatorcontrib>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</creatorcontrib><description>In this article, thermal stability of doped Al
13
nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ
rms,
MSD and ε
pro.
The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-021-02829-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>20th deMon Developers Workshop ; Aluminum ; Atomic/Molecular Structure and Spectra ; Chemistry ; Chemistry and Materials Science ; Density functional theory ; Inorganic Chemistry ; Molecular dynamics ; Molecular orbitals ; Nanoclusters ; Organic Chemistry ; Physical Chemistry ; Regular Article ; Theoretical and Computational Chemistry ; Thermal simulation ; Thermal stability</subject><ispartof>Theoretical chemistry accounts, 2021-09, Vol.140 (9), Article 132</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</citedby><cites>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Singh, Chandrodai Pratap</creatorcontrib><creatorcontrib>Samal, Pragnya Paramita</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>In this article, thermal stability of doped Al
13
nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ
rms,
MSD and ε
pro.
The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</description><subject>20th deMon Developers Workshop</subject><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Inorganic Chemistry</subject><subject>Molecular dynamics</subject><subject>Molecular orbitals</subject><subject>Nanoclusters</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Regular Article</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermal simulation</subject><subject>Thermal stability</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMQf8SOKEDcpTKnQpEpt1Yzs0lRMXOxny73FJJTak-xrO-a50ELqk5JoSIm4CIYymSRyxC1Ym4gjNaMpZwhhPjw93UdDPU3QWwpZEPcvEDL2vN8a3YHHooWps04_Y1Rg6bDrtNkZ7sHbE2u2MxmCHtumGFnfQOWWH0BsfbjHg-9XbQwQMejxHJzXYYC4Oe44-nh7Xi5dkuXp-XdwtE8Vp2SdAdV0IqECDqPKUAUuLDIRSnBtgSkBBCUBFWV1zMFzlRJRZLE4qRYUQfI6uJu7Ou-_BhF5u3eC7-FKyLC_ynFBBoopNKuVdCN7UcuebFvwoKZH73OSUm4xD_uYm92g-mUIUd1_G_6H_cf0AVGpwcQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Singh, Chandrodai Pratap</creator><creator>Samal, Pragnya Paramita</creator><creator>Krishnamurty, Sailaja</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><author>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>20th deMon Developers Workshop</topic><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Inorganic Chemistry</topic><topic>Molecular dynamics</topic><topic>Molecular orbitals</topic><topic>Nanoclusters</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Regular Article</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermal simulation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Chandrodai Pratap</creatorcontrib><creatorcontrib>Samal, Pragnya Paramita</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Chandrodai Pratap</au><au>Samal, Pragnya Paramita</au><au>Krishnamurty, Sailaja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>140</volume><issue>9</issue><artnum>132</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>In this article, thermal stability of doped Al
13
nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ
rms,
MSD and ε
pro.
The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-021-02829-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-881X |
ispartof | Theoretical chemistry accounts, 2021-09, Vol.140 (9), Article 132 |
issn | 1432-881X 1432-2234 |
language | eng |
recordid | cdi_proquest_journals_2568660170 |
source | Springer Nature |
subjects | 20th deMon Developers Workshop Aluminum Atomic/Molecular Structure and Spectra Chemistry Chemistry and Materials Science Density functional theory Inorganic Chemistry Molecular dynamics Molecular orbitals Nanoclusters Organic Chemistry Physical Chemistry Regular Article Theoretical and Computational Chemistry Thermal simulation Thermal stability |
title | Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20an%20endohedrally%20doped%20aluminum%20nanoclusters:%20a%20BOMD%20study&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Singh,%20Chandrodai%20Pratap&rft.date=2021-09-01&rft.volume=140&rft.issue=9&rft.artnum=132&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-021-02829-7&rft_dat=%3Cproquest_cross%3E2568660170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568660170&rft_id=info:pmid/&rfr_iscdi=true |