Loading…

Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study

In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dy...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical chemistry accounts 2021-09, Vol.140 (9), Article 132
Main Authors: Singh, Chandrodai Pratap, Samal, Pragnya Paramita, Krishnamurty, Sailaja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773
cites cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773
container_end_page
container_issue 9
container_start_page
container_title Theoretical chemistry accounts
container_volume 140
creator Singh, Chandrodai Pratap
Samal, Pragnya Paramita
Krishnamurty, Sailaja
description In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ rms, MSD and ε pro. The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.
doi_str_mv 10.1007/s00214-021-02829-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568660170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568660170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMQf8SOKEDcpTKnQpEpt1Yzs0lRMXOxny73FJJTak-xrO-a50ELqk5JoSIm4CIYymSRyxC1Ym4gjNaMpZwhhPjw93UdDPU3QWwpZEPcvEDL2vN8a3YHHooWps04_Y1Rg6bDrtNkZ7sHbE2u2MxmCHtumGFnfQOWWH0BsfbjHg-9XbQwQMejxHJzXYYC4Oe44-nh7Xi5dkuXp-XdwtE8Vp2SdAdV0IqECDqPKUAUuLDIRSnBtgSkBBCUBFWV1zMFzlRJRZLE4qRYUQfI6uJu7Ou-_BhF5u3eC7-FKyLC_ynFBBoopNKuVdCN7UcuebFvwoKZH73OSUm4xD_uYm92g-mUIUd1_G_6H_cf0AVGpwcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568660170</pqid></control><display><type>article</type><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><source>Springer Nature</source><creator>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</creator><creatorcontrib>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</creatorcontrib><description>In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ rms, MSD and ε pro. The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-021-02829-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>20th deMon Developers Workshop ; Aluminum ; Atomic/Molecular Structure and Spectra ; Chemistry ; Chemistry and Materials Science ; Density functional theory ; Inorganic Chemistry ; Molecular dynamics ; Molecular orbitals ; Nanoclusters ; Organic Chemistry ; Physical Chemistry ; Regular Article ; Theoretical and Computational Chemistry ; Thermal simulation ; Thermal stability</subject><ispartof>Theoretical chemistry accounts, 2021-09, Vol.140 (9), Article 132</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</citedby><cites>FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Singh, Chandrodai Pratap</creatorcontrib><creatorcontrib>Samal, Pragnya Paramita</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ rms, MSD and ε pro. The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</description><subject>20th deMon Developers Workshop</subject><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Inorganic Chemistry</subject><subject>Molecular dynamics</subject><subject>Molecular orbitals</subject><subject>Nanoclusters</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Regular Article</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermal simulation</subject><subject>Thermal stability</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMQf8SOKEDcpTKnQpEpt1Yzs0lRMXOxny73FJJTak-xrO-a50ELqk5JoSIm4CIYymSRyxC1Ym4gjNaMpZwhhPjw93UdDPU3QWwpZEPcvEDL2vN8a3YHHooWps04_Y1Rg6bDrtNkZ7sHbE2u2MxmCHtumGFnfQOWWH0BsfbjHg-9XbQwQMejxHJzXYYC4Oe44-nh7Xi5dkuXp-XdwtE8Vp2SdAdV0IqECDqPKUAUuLDIRSnBtgSkBBCUBFWV1zMFzlRJRZLE4qRYUQfI6uJu7Ou-_BhF5u3eC7-FKyLC_ynFBBoopNKuVdCN7UcuebFvwoKZH73OSUm4xD_uYm92g-mUIUd1_G_6H_cf0AVGpwcQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Singh, Chandrodai Pratap</creator><creator>Samal, Pragnya Paramita</creator><creator>Krishnamurty, Sailaja</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</title><author>Singh, Chandrodai Pratap ; Samal, Pragnya Paramita ; Krishnamurty, Sailaja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>20th deMon Developers Workshop</topic><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Inorganic Chemistry</topic><topic>Molecular dynamics</topic><topic>Molecular orbitals</topic><topic>Nanoclusters</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Regular Article</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermal simulation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Chandrodai Pratap</creatorcontrib><creatorcontrib>Samal, Pragnya Paramita</creatorcontrib><creatorcontrib>Krishnamurty, Sailaja</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Chandrodai Pratap</au><au>Samal, Pragnya Paramita</au><au>Krishnamurty, Sailaja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>140</volume><issue>9</issue><artnum>132</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>In this article, thermal stability of doped Al 13 nanoclusters has been systematically investigated within the framework of density functional theory (DFT). To explain thermal stability, simulations have been carried out over a temperature range from 300 to 1100 K using Born–Oppenheimer molecular dynamics (BOMD). The atomic displacements have been quantified by calculating δ rms, MSD and ε pro. The thermal stability of different clusters is explained using underlined electronic properties such as HOMO–LUMO, charges and bond length.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-021-02829-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1432-881X
ispartof Theoretical chemistry accounts, 2021-09, Vol.140 (9), Article 132
issn 1432-881X
1432-2234
language eng
recordid cdi_proquest_journals_2568660170
source Springer Nature
subjects 20th deMon Developers Workshop
Aluminum
Atomic/Molecular Structure and Spectra
Chemistry
Chemistry and Materials Science
Density functional theory
Inorganic Chemistry
Molecular dynamics
Molecular orbitals
Nanoclusters
Organic Chemistry
Physical Chemistry
Regular Article
Theoretical and Computational Chemistry
Thermal simulation
Thermal stability
title Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20an%20endohedrally%20doped%20aluminum%20nanoclusters:%20a%20BOMD%20study&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Singh,%20Chandrodai%20Pratap&rft.date=2021-09-01&rft.volume=140&rft.issue=9&rft.artnum=132&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-021-02829-7&rft_dat=%3Cproquest_cross%3E2568660170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a1df87abada7b642a2485a7cc33ea2c7a810aab12ff3ae3c6079579530bc17773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568660170&rft_id=info:pmid/&rfr_iscdi=true