Loading…
Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices
We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we parti...
Saved in:
Published in: | Physical review. B 2021-08, Vol.104 (5), p.1, Article 054415 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 104 |
creator | Schubert, Dennis Richter, Jonas Jin, Fengping Michielsen, Kristel De Raedt, Hans Steinigeweg, Robin |
description | We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ . |
doi_str_mv | 10.1103/PhysRevB.104.054415 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568703626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsNT-Al8WfG3q7CWbrm9avEHBC-prmOxuaEqStjtJof_eSNWXmeFwzhn4GLsUMBMC1PXr6kDvYX83E6BnkGot0hM2ktrYxFpjT__vFM7ZhGgNAMKAzcCO2Ndbj23XN3wfIvXEXY1ElcOa-0OLTeWIVy2n7TCajQ813fDFCquWprxG74fQlGPrOe16jGHQuq5ygS7YWYk1hcnvHrPPh_uPxVOyfHl8XtwuE6ek7JK5CKWyKCxkWjqjPWKBqTXBmcI7WRbeKLS2SEspRGak9iVIoYWXSikPQY3Z1bF3Gze7PlCXrzd9bIeXuUzNPANlpBlc6uhycUMUQ5lvY9VgPOQC8h-G-R_DQdD5kaH6BtFBZoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703626</pqid></control><display><type>article</type><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</creator><creatorcontrib>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</creatorcontrib><description>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.054415</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Autocorrelation functions ; Chains ; Classical mechanics ; Conservation laws ; Equations of motion ; Ladders ; Lattice sites ; Schrodinger equation ; Spin dynamics ; Transport properties ; Two dimensional models</subject><ispartof>Physical review. B, 2021-08, Vol.104 (5), p.1, Article 054415</ispartof><rights>Copyright American Physical Society Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</citedby><cites>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</cites><orcidid>0000-0003-3476-524X ; 0000-0003-0608-0884 ; 0000-0003-2184-5275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schubert, Dennis</creatorcontrib><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Jin, Fengping</creatorcontrib><creatorcontrib>Michielsen, Kristel</creatorcontrib><creatorcontrib>De Raedt, Hans</creatorcontrib><creatorcontrib>Steinigeweg, Robin</creatorcontrib><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><title>Physical review. B</title><description>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</description><subject>Autocorrelation functions</subject><subject>Chains</subject><subject>Classical mechanics</subject><subject>Conservation laws</subject><subject>Equations of motion</subject><subject>Ladders</subject><subject>Lattice sites</subject><subject>Schrodinger equation</subject><subject>Spin dynamics</subject><subject>Transport properties</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsNT-Al8WfG3q7CWbrm9avEHBC-prmOxuaEqStjtJof_eSNWXmeFwzhn4GLsUMBMC1PXr6kDvYX83E6BnkGot0hM2ktrYxFpjT__vFM7ZhGgNAMKAzcCO2Ndbj23XN3wfIvXEXY1ElcOa-0OLTeWIVy2n7TCajQ813fDFCquWprxG74fQlGPrOe16jGHQuq5ygS7YWYk1hcnvHrPPh_uPxVOyfHl8XtwuE6ek7JK5CKWyKCxkWjqjPWKBqTXBmcI7WRbeKLS2SEspRGak9iVIoYWXSikPQY3Z1bF3Gze7PlCXrzd9bIeXuUzNPANlpBlc6uhycUMUQ5lvY9VgPOQC8h-G-R_DQdD5kaH6BtFBZoo</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Schubert, Dennis</creator><creator>Richter, Jonas</creator><creator>Jin, Fengping</creator><creator>Michielsen, Kristel</creator><creator>De Raedt, Hans</creator><creator>Steinigeweg, Robin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3476-524X</orcidid><orcidid>https://orcid.org/0000-0003-0608-0884</orcidid><orcidid>https://orcid.org/0000-0003-2184-5275</orcidid></search><sort><creationdate>20210801</creationdate><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><author>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autocorrelation functions</topic><topic>Chains</topic><topic>Classical mechanics</topic><topic>Conservation laws</topic><topic>Equations of motion</topic><topic>Ladders</topic><topic>Lattice sites</topic><topic>Schrodinger equation</topic><topic>Spin dynamics</topic><topic>Transport properties</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schubert, Dennis</creatorcontrib><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Jin, Fengping</creatorcontrib><creatorcontrib>Michielsen, Kristel</creatorcontrib><creatorcontrib>De Raedt, Hans</creatorcontrib><creatorcontrib>Steinigeweg, Robin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schubert, Dennis</au><au>Richter, Jonas</au><au>Jin, Fengping</au><au>Michielsen, Kristel</au><au>De Raedt, Hans</au><au>Steinigeweg, Robin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</atitle><jtitle>Physical review. B</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>104</volume><issue>5</issue><spage>1</spage><pages>1-</pages><artnum>054415</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.054415</doi><orcidid>https://orcid.org/0000-0003-3476-524X</orcidid><orcidid>https://orcid.org/0000-0003-0608-0884</orcidid><orcidid>https://orcid.org/0000-0003-2184-5275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-08, Vol.104 (5), p.1, Article 054415 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2568703626 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Autocorrelation functions Chains Classical mechanics Conservation laws Equations of motion Ladders Lattice sites Schrodinger equation Spin dynamics Transport properties Two dimensional models |
title | Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20versus%20classical%20dynamics%20in%20spin%20models:%20Chains,%20ladders,%20and%20square%20lattices&rft.jtitle=Physical%20review.%20B&rft.au=Schubert,%20Dennis&rft.date=2021-08-01&rft.volume=104&rft.issue=5&rft.spage=1&rft.pages=1-&rft.artnum=054415&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.054415&rft_dat=%3Cproquest_cross%3E2568703626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568703626&rft_id=info:pmid/&rfr_iscdi=true |