Loading…

Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices

We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we parti...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2021-08, Vol.104 (5), p.1, Article 054415
Main Authors: Schubert, Dennis, Richter, Jonas, Jin, Fengping, Michielsen, Kristel, De Raedt, Hans, Steinigeweg, Robin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3
cites cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3
container_end_page
container_issue 5
container_start_page 1
container_title Physical review. B
container_volume 104
creator Schubert, Dennis
Richter, Jonas
Jin, Fengping
Michielsen, Kristel
De Raedt, Hans
Steinigeweg, Robin
description We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .
doi_str_mv 10.1103/PhysRevB.104.054415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568703626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsNT-Al8WfG3q7CWbrm9avEHBC-prmOxuaEqStjtJof_eSNWXmeFwzhn4GLsUMBMC1PXr6kDvYX83E6BnkGot0hM2ktrYxFpjT__vFM7ZhGgNAMKAzcCO2Ndbj23XN3wfIvXEXY1ElcOa-0OLTeWIVy2n7TCajQ813fDFCquWprxG74fQlGPrOe16jGHQuq5ygS7YWYk1hcnvHrPPh_uPxVOyfHl8XtwuE6ek7JK5CKWyKCxkWjqjPWKBqTXBmcI7WRbeKLS2SEspRGak9iVIoYWXSikPQY3Z1bF3Gze7PlCXrzd9bIeXuUzNPANlpBlc6uhycUMUQ5lvY9VgPOQC8h-G-R_DQdD5kaH6BtFBZoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703626</pqid></control><display><type>article</type><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</creator><creatorcontrib>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</creatorcontrib><description>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.054415</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Autocorrelation functions ; Chains ; Classical mechanics ; Conservation laws ; Equations of motion ; Ladders ; Lattice sites ; Schrodinger equation ; Spin dynamics ; Transport properties ; Two dimensional models</subject><ispartof>Physical review. B, 2021-08, Vol.104 (5), p.1, Article 054415</ispartof><rights>Copyright American Physical Society Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</citedby><cites>FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</cites><orcidid>0000-0003-3476-524X ; 0000-0003-0608-0884 ; 0000-0003-2184-5275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schubert, Dennis</creatorcontrib><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Jin, Fengping</creatorcontrib><creatorcontrib>Michielsen, Kristel</creatorcontrib><creatorcontrib>De Raedt, Hans</creatorcontrib><creatorcontrib>Steinigeweg, Robin</creatorcontrib><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><title>Physical review. B</title><description>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</description><subject>Autocorrelation functions</subject><subject>Chains</subject><subject>Classical mechanics</subject><subject>Conservation laws</subject><subject>Equations of motion</subject><subject>Ladders</subject><subject>Lattice sites</subject><subject>Schrodinger equation</subject><subject>Spin dynamics</subject><subject>Transport properties</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsNT-Al8WfG3q7CWbrm9avEHBC-prmOxuaEqStjtJof_eSNWXmeFwzhn4GLsUMBMC1PXr6kDvYX83E6BnkGot0hM2ktrYxFpjT__vFM7ZhGgNAMKAzcCO2Ndbj23XN3wfIvXEXY1ElcOa-0OLTeWIVy2n7TCajQ813fDFCquWprxG74fQlGPrOe16jGHQuq5ygS7YWYk1hcnvHrPPh_uPxVOyfHl8XtwuE6ek7JK5CKWyKCxkWjqjPWKBqTXBmcI7WRbeKLS2SEspRGak9iVIoYWXSikPQY3Z1bF3Gze7PlCXrzd9bIeXuUzNPANlpBlc6uhycUMUQ5lvY9VgPOQC8h-G-R_DQdD5kaH6BtFBZoo</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Schubert, Dennis</creator><creator>Richter, Jonas</creator><creator>Jin, Fengping</creator><creator>Michielsen, Kristel</creator><creator>De Raedt, Hans</creator><creator>Steinigeweg, Robin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3476-524X</orcidid><orcidid>https://orcid.org/0000-0003-0608-0884</orcidid><orcidid>https://orcid.org/0000-0003-2184-5275</orcidid></search><sort><creationdate>20210801</creationdate><title>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</title><author>Schubert, Dennis ; Richter, Jonas ; Jin, Fengping ; Michielsen, Kristel ; De Raedt, Hans ; Steinigeweg, Robin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autocorrelation functions</topic><topic>Chains</topic><topic>Classical mechanics</topic><topic>Conservation laws</topic><topic>Equations of motion</topic><topic>Ladders</topic><topic>Lattice sites</topic><topic>Schrodinger equation</topic><topic>Spin dynamics</topic><topic>Transport properties</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schubert, Dennis</creatorcontrib><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Jin, Fengping</creatorcontrib><creatorcontrib>Michielsen, Kristel</creatorcontrib><creatorcontrib>De Raedt, Hans</creatorcontrib><creatorcontrib>Steinigeweg, Robin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schubert, Dennis</au><au>Richter, Jonas</au><au>Jin, Fengping</au><au>Michielsen, Kristel</au><au>De Raedt, Hans</au><au>Steinigeweg, Robin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices</atitle><jtitle>Physical review. B</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>104</volume><issue>5</issue><spage>1</spage><pages>1-</pages><artnum>054415</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrödinger equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin1 / 2 systems with up to N = 36 lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1 / 2 is small and far away from the classical limit S → ∞ .</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.054415</doi><orcidid>https://orcid.org/0000-0003-3476-524X</orcidid><orcidid>https://orcid.org/0000-0003-0608-0884</orcidid><orcidid>https://orcid.org/0000-0003-2184-5275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-08, Vol.104 (5), p.1, Article 054415
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2568703626
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Autocorrelation functions
Chains
Classical mechanics
Conservation laws
Equations of motion
Ladders
Lattice sites
Schrodinger equation
Spin dynamics
Transport properties
Two dimensional models
title Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20versus%20classical%20dynamics%20in%20spin%20models:%20Chains,%20ladders,%20and%20square%20lattices&rft.jtitle=Physical%20review.%20B&rft.au=Schubert,%20Dennis&rft.date=2021-08-01&rft.volume=104&rft.issue=5&rft.spage=1&rft.pages=1-&rft.artnum=054415&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.054415&rft_dat=%3Cproquest_cross%3E2568703626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-81ef39a190742c64daaba596ec6bdc2fbd63a99b5f2117624df02141d2333d0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568703626&rft_id=info:pmid/&rfr_iscdi=true