Loading…

Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds

Cloud has become an important platform for executing numerous deadline-constrained scientific applications generally represented by workflow models. It provides scientists a simple and cost-efficient method of running workflows on their rental Virtual Machines (VMs) anytime and anywhere. Since pay-a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cloud computing 2021-07, Vol.9 (3), p.1180-1194
Main Authors: Liu, Jiagang, Ren, Ju, Dai, Wei, Zhang, Deyu, Zhou, Pude, Zhang, Yaoxue, Min, Geyong, Najjari, Noushin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63
cites cdi_FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63
container_end_page 1194
container_issue 3
container_start_page 1180
container_title IEEE transactions on cloud computing
container_volume 9
creator Liu, Jiagang
Ren, Ju
Dai, Wei
Zhang, Deyu
Zhou, Pude
Zhang, Yaoxue
Min, Geyong
Najjari, Noushin
description Cloud has become an important platform for executing numerous deadline-constrained scientific applications generally represented by workflow models. It provides scientists a simple and cost-efficient method of running workflows on their rental Virtual Machines (VMs) anytime and anywhere. Since pay-as-you-go is a dominating pricing solution in clouds, extensive research efforts have been devoted to minimizing the monetary cost of executing workflows by designing tailored VM allocation mechanisms. However, most of them assume that the task execution time in clouds is static and can be estimated in advance, which is impractical in real scenarios due to performance fluctuation of VMs. In this paper, we propose an onli N e multi-workfl O w S cheduling F ramework, named NOSF, to schedule deadline-constrained workflows with random arrivals and uncertain task execution time. In NOSF, workflow scheduling process consists of three phases, including workflow preprocessing, VM allocation and feedback process. Built upon the new framework, a deadline-aware heuristic algorithm is then developed to elastically provision suitable VMs for workflow execution, with the objective of minimizing the rental cost and improving resource utilization. Simulation results demonstrate that the proposed algorithm significantly outperforms two state-of-the-art algorithms in terms of reducing VM rental costs and deadline violation probability, as well as improving the resource utilization efficiency.
doi_str_mv 10.1109/TCC.2019.2906300
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568777528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8669862</ieee_id><sourcerecordid>2568777528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOObugpeA586XdEmTo5Spg8kO2_AYsvRVu3XtTFrU_96MDfFd3q_v9z34EHLLYMwY6IdVno85MD3mGmQKcEEGnEmVZEyyy3_1NRmFsIUYSjDN9IAsF01dNUhf-7qrkrfW78q6_aJL94FFHzfvtG8K9HTdOPSdrRq6smFHp9_o-q5qY1vtkcbxzNolzeu2L8INuSptHXB0zkOyfpqu8pdkvnie5Y_zxHHNuiQFtBsuJ6UopHLFprTCOjZJbYEIG-QZiklmMwVQSIHguBKcW6tBK8dZKdMhuT_dPfj2s8fQmW3b-ya-NFxIlWWZ4Cqq4KRyvg3BY2kOvtpb_2MYmCM9E-mZIz1zphctdydLhYh_ciWlVpKnv4ataok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568777528</pqid></control><display><type>article</type><title>Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds</title><source>IEEE Xplore (Online service)</source><creator>Liu, Jiagang ; Ren, Ju ; Dai, Wei ; Zhang, Deyu ; Zhou, Pude ; Zhang, Yaoxue ; Min, Geyong ; Najjari, Noushin</creator><creatorcontrib>Liu, Jiagang ; Ren, Ju ; Dai, Wei ; Zhang, Deyu ; Zhou, Pude ; Zhang, Yaoxue ; Min, Geyong ; Najjari, Noushin</creatorcontrib><description>Cloud has become an important platform for executing numerous deadline-constrained scientific applications generally represented by workflow models. It provides scientists a simple and cost-efficient method of running workflows on their rental Virtual Machines (VMs) anytime and anywhere. Since pay-as-you-go is a dominating pricing solution in clouds, extensive research efforts have been devoted to minimizing the monetary cost of executing workflows by designing tailored VM allocation mechanisms. However, most of them assume that the task execution time in clouds is static and can be estimated in advance, which is impractical in real scenarios due to performance fluctuation of VMs. In this paper, we propose an onli N e multi-workfl O w S cheduling F ramework, named NOSF, to schedule deadline-constrained workflows with random arrivals and uncertain task execution time. In NOSF, workflow scheduling process consists of three phases, including workflow preprocessing, VM allocation and feedback process. Built upon the new framework, a deadline-aware heuristic algorithm is then developed to elastically provision suitable VMs for workflow execution, with the objective of minimizing the rental cost and improving resource utilization. Simulation results demonstrate that the proposed algorithm significantly outperforms two state-of-the-art algorithms in terms of reducing VM rental costs and deadline violation probability, as well as improving the resource utilization efficiency.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2019.2906300</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Algorithms ; Cloud computing ; Heuristic methods ; multiple workflows ; Pricing ; Processor scheduling ; Resource management ; Resource utilization ; Schedules ; Scheduling ; Stochastic processes ; Task analysis ; Task scheduling ; uncertain task execution time ; Virtual environments ; VM rental cost ; Workflow ; workflow scheduling</subject><ispartof>IEEE transactions on cloud computing, 2021-07, Vol.9 (3), p.1180-1194</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63</citedby><cites>FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63</cites><orcidid>0000-0002-5676-1285 ; 0000-0001-6717-461X ; 0000-0003-2782-183X ; 0000-0003-1395-7314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8669862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Jiagang</creatorcontrib><creatorcontrib>Ren, Ju</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Zhang, Deyu</creatorcontrib><creatorcontrib>Zhou, Pude</creatorcontrib><creatorcontrib>Zhang, Yaoxue</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Najjari, Noushin</creatorcontrib><title>Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Cloud has become an important platform for executing numerous deadline-constrained scientific applications generally represented by workflow models. It provides scientists a simple and cost-efficient method of running workflows on their rental Virtual Machines (VMs) anytime and anywhere. Since pay-as-you-go is a dominating pricing solution in clouds, extensive research efforts have been devoted to minimizing the monetary cost of executing workflows by designing tailored VM allocation mechanisms. However, most of them assume that the task execution time in clouds is static and can be estimated in advance, which is impractical in real scenarios due to performance fluctuation of VMs. In this paper, we propose an onli N e multi-workfl O w S cheduling F ramework, named NOSF, to schedule deadline-constrained workflows with random arrivals and uncertain task execution time. In NOSF, workflow scheduling process consists of three phases, including workflow preprocessing, VM allocation and feedback process. Built upon the new framework, a deadline-aware heuristic algorithm is then developed to elastically provision suitable VMs for workflow execution, with the objective of minimizing the rental cost and improving resource utilization. Simulation results demonstrate that the proposed algorithm significantly outperforms two state-of-the-art algorithms in terms of reducing VM rental costs and deadline violation probability, as well as improving the resource utilization efficiency.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Heuristic methods</subject><subject>multiple workflows</subject><subject>Pricing</subject><subject>Processor scheduling</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Stochastic processes</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>uncertain task execution time</subject><subject>Virtual environments</subject><subject>VM rental cost</subject><subject>Workflow</subject><subject>workflow scheduling</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAUx4MoOObugpeA586XdEmTo5Spg8kO2_AYsvRVu3XtTFrU_96MDfFd3q_v9z34EHLLYMwY6IdVno85MD3mGmQKcEEGnEmVZEyyy3_1NRmFsIUYSjDN9IAsF01dNUhf-7qrkrfW78q6_aJL94FFHzfvtG8K9HTdOPSdrRq6smFHp9_o-q5qY1vtkcbxzNolzeu2L8INuSptHXB0zkOyfpqu8pdkvnie5Y_zxHHNuiQFtBsuJ6UopHLFprTCOjZJbYEIG-QZiklmMwVQSIHguBKcW6tBK8dZKdMhuT_dPfj2s8fQmW3b-ya-NFxIlWWZ4Cqq4KRyvg3BY2kOvtpb_2MYmCM9E-mZIz1zphctdydLhYh_ciWlVpKnv4ataok</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Liu, Jiagang</creator><creator>Ren, Ju</creator><creator>Dai, Wei</creator><creator>Zhang, Deyu</creator><creator>Zhou, Pude</creator><creator>Zhang, Yaoxue</creator><creator>Min, Geyong</creator><creator>Najjari, Noushin</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5676-1285</orcidid><orcidid>https://orcid.org/0000-0001-6717-461X</orcidid><orcidid>https://orcid.org/0000-0003-2782-183X</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></search><sort><creationdate>20210701</creationdate><title>Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds</title><author>Liu, Jiagang ; Ren, Ju ; Dai, Wei ; Zhang, Deyu ; Zhou, Pude ; Zhang, Yaoxue ; Min, Geyong ; Najjari, Noushin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Heuristic methods</topic><topic>multiple workflows</topic><topic>Pricing</topic><topic>Processor scheduling</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Stochastic processes</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>uncertain task execution time</topic><topic>Virtual environments</topic><topic>VM rental cost</topic><topic>Workflow</topic><topic>workflow scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiagang</creatorcontrib><creatorcontrib>Ren, Ju</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Zhang, Deyu</creatorcontrib><creatorcontrib>Zhou, Pude</creatorcontrib><creatorcontrib>Zhang, Yaoxue</creatorcontrib><creatorcontrib>Min, Geyong</creatorcontrib><creatorcontrib>Najjari, Noushin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiagang</au><au>Ren, Ju</au><au>Dai, Wei</au><au>Zhang, Deyu</au><au>Zhou, Pude</au><au>Zhang, Yaoxue</au><au>Min, Geyong</au><au>Najjari, Noushin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>1180</spage><epage>1194</epage><pages>1180-1194</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Cloud has become an important platform for executing numerous deadline-constrained scientific applications generally represented by workflow models. It provides scientists a simple and cost-efficient method of running workflows on their rental Virtual Machines (VMs) anytime and anywhere. Since pay-as-you-go is a dominating pricing solution in clouds, extensive research efforts have been devoted to minimizing the monetary cost of executing workflows by designing tailored VM allocation mechanisms. However, most of them assume that the task execution time in clouds is static and can be estimated in advance, which is impractical in real scenarios due to performance fluctuation of VMs. In this paper, we propose an onli N e multi-workfl O w S cheduling F ramework, named NOSF, to schedule deadline-constrained workflows with random arrivals and uncertain task execution time. In NOSF, workflow scheduling process consists of three phases, including workflow preprocessing, VM allocation and feedback process. Built upon the new framework, a deadline-aware heuristic algorithm is then developed to elastically provision suitable VMs for workflow execution, with the objective of minimizing the rental cost and improving resource utilization. Simulation results demonstrate that the proposed algorithm significantly outperforms two state-of-the-art algorithms in terms of reducing VM rental costs and deadline violation probability, as well as improving the resource utilization efficiency.</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/TCC.2019.2906300</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5676-1285</orcidid><orcidid>https://orcid.org/0000-0001-6717-461X</orcidid><orcidid>https://orcid.org/0000-0003-2782-183X</orcidid><orcidid>https://orcid.org/0000-0003-1395-7314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2021-07, Vol.9 (3), p.1180-1194
issn 2168-7161
2168-7161
2372-0018
language eng
recordid cdi_proquest_journals_2568777528
source IEEE Xplore (Online service)
subjects Algorithms
Cloud computing
Heuristic methods
multiple workflows
Pricing
Processor scheduling
Resource management
Resource utilization
Schedules
Scheduling
Stochastic processes
Task analysis
Task scheduling
uncertain task execution time
Virtual environments
VM rental cost
Workflow
workflow scheduling
title Online Multi-Workflow Scheduling under Uncertain Task Execution Time in IaaS Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Multi-Workflow%20Scheduling%20under%20Uncertain%20Task%20Execution%20Time%20in%20IaaS%20Clouds&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Liu,%20Jiagang&rft.date=2021-07-01&rft.volume=9&rft.issue=3&rft.spage=1180&rft.epage=1194&rft.pages=1180-1194&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2019.2906300&rft_dat=%3Cproquest_cross%3E2568777528%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-30eab264f5d68cdbfa5ac143adee0be27e547a7800d65e0c28522aa9098c21f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568777528&rft_id=info:pmid/&rft_ieee_id=8669862&rfr_iscdi=true