Loading…

Knowledge Perceived Multi-modal Pretraining in E-commerce

In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are two pervasive problems of multi-modal product dat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Zhu, Yushan, Tou, Huaixiao, Zhang, Wen, Ye, Ganqiang, Chen, Hui, Zhang, Ningyu, Chen, Huajun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhu, Yushan
Tou, Huaixiao
Zhang, Wen
Ye, Ganqiang
Chen, Hui
Zhang, Ningyu
Chen, Huajun
description In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are two pervasive problems of multi-modal product data in real E-commerce scenarios. To this end, we propose a novel method, K3M, which introduces knowledge modality in multi-modal pretraining to correct the noise and supplement the missing of image and text modalities. The modal-encoding layer extracts the features of each modality. The modal-interaction layer is capable of effectively modeling the interaction of multiple modalities, where an initial-interactive feature fusion model is designed to maintain the independence of image modality and text modality, and a structure aggregation module is designed to fuse the information of image, text, and knowledge modalities. We pretrain K3M with three pretraining tasks, including masked object modeling (MOM), masked language modeling (MLM), and link prediction modeling (LPM). Experimental results on a real-world E-commerce dataset and a series of product-based downstream tasks demonstrate that K3M achieves significant improvements in performances than the baseline and state-of-the-art methods when modality-noise or modality-missing exists.
doi_str_mv 10.48550/arxiv.2109.00895
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2568816465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568816465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-2154238a047865f4c11b2bc8d27884f7a91ee22b235f6953482df383c3fcd9eb3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wN2A64zJTW7mZimlPrBiF92XTJIpKfPQzEz181V0dTaHcxi7kaLUhCjuXP5K5xKksKUQZPGCLUApyUkDXLHVOJ6EEGAqQFQLZl_64bON4RiLXcw-pnMMxevcTol3Q3Btsctxyi71qT8WqS823A9d92tes8vGtWNc_XPJ9g-b_fqJb98en9f3W-4QkINEDYqc0BUZbLSXsobaU4CKSDeVszJGgBoUNsai0gShUaS8anywsVZLdvuXfc_DxxzH6XAa5tz_HA-AhkgabVB9A6HbR04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568816465</pqid></control><display><type>article</type><title>Knowledge Perceived Multi-modal Pretraining in E-commerce</title><source>Publicly Available Content Database</source><creator>Zhu, Yushan ; Tou, Huaixiao ; Zhang, Wen ; Ye, Ganqiang ; Chen, Hui ; Zhang, Ningyu ; Chen, Huajun</creator><creatorcontrib>Zhu, Yushan ; Tou, Huaixiao ; Zhang, Wen ; Ye, Ganqiang ; Chen, Hui ; Zhang, Ningyu ; Chen, Huajun</creatorcontrib><description>In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are two pervasive problems of multi-modal product data in real E-commerce scenarios. To this end, we propose a novel method, K3M, which introduces knowledge modality in multi-modal pretraining to correct the noise and supplement the missing of image and text modalities. The modal-encoding layer extracts the features of each modality. The modal-interaction layer is capable of effectively modeling the interaction of multiple modalities, where an initial-interactive feature fusion model is designed to maintain the independence of image modality and text modality, and a structure aggregation module is designed to fuse the information of image, text, and knowledge modalities. We pretrain K3M with three pretraining tasks, including masked object modeling (MOM), masked language modeling (MLM), and link prediction modeling (LPM). Experimental results on a real-world E-commerce dataset and a series of product-based downstream tasks demonstrate that K3M achieves significant improvements in performances than the baseline and state-of-the-art methods when modality-noise or modality-missing exists.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2109.00895</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electronic commerce ; Feature extraction ; Modelling ; Noise ; Prediction models</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2568816465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Zhu, Yushan</creatorcontrib><creatorcontrib>Tou, Huaixiao</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Ye, Ganqiang</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><title>Knowledge Perceived Multi-modal Pretraining in E-commerce</title><title>arXiv.org</title><description>In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are two pervasive problems of multi-modal product data in real E-commerce scenarios. To this end, we propose a novel method, K3M, which introduces knowledge modality in multi-modal pretraining to correct the noise and supplement the missing of image and text modalities. The modal-encoding layer extracts the features of each modality. The modal-interaction layer is capable of effectively modeling the interaction of multiple modalities, where an initial-interactive feature fusion model is designed to maintain the independence of image modality and text modality, and a structure aggregation module is designed to fuse the information of image, text, and knowledge modalities. We pretrain K3M with three pretraining tasks, including masked object modeling (MOM), masked language modeling (MLM), and link prediction modeling (LPM). Experimental results on a real-world E-commerce dataset and a series of product-based downstream tasks demonstrate that K3M achieves significant improvements in performances than the baseline and state-of-the-art methods when modality-noise or modality-missing exists.</description><subject>Electronic commerce</subject><subject>Feature extraction</subject><subject>Modelling</subject><subject>Noise</subject><subject>Prediction models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wN2A64zJTW7mZimlPrBiF92XTJIpKfPQzEz181V0dTaHcxi7kaLUhCjuXP5K5xKksKUQZPGCLUApyUkDXLHVOJ6EEGAqQFQLZl_64bON4RiLXcw-pnMMxevcTol3Q3Btsctxyi71qT8WqS823A9d92tes8vGtWNc_XPJ9g-b_fqJb98en9f3W-4QkINEDYqc0BUZbLSXsobaU4CKSDeVszJGgBoUNsai0gShUaS8anywsVZLdvuXfc_DxxzH6XAa5tz_HA-AhkgabVB9A6HbR04</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Zhu, Yushan</creator><creator>Tou, Huaixiao</creator><creator>Zhang, Wen</creator><creator>Ye, Ganqiang</creator><creator>Chen, Hui</creator><creator>Zhang, Ningyu</creator><creator>Chen, Huajun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210820</creationdate><title>Knowledge Perceived Multi-modal Pretraining in E-commerce</title><author>Zhu, Yushan ; Tou, Huaixiao ; Zhang, Wen ; Ye, Ganqiang ; Chen, Hui ; Zhang, Ningyu ; Chen, Huajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-2154238a047865f4c11b2bc8d27884f7a91ee22b235f6953482df383c3fcd9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electronic commerce</topic><topic>Feature extraction</topic><topic>Modelling</topic><topic>Noise</topic><topic>Prediction models</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yushan</creatorcontrib><creatorcontrib>Tou, Huaixiao</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Ye, Ganqiang</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yushan</au><au>Tou, Huaixiao</au><au>Zhang, Wen</au><au>Ye, Ganqiang</au><au>Chen, Hui</au><au>Zhang, Ningyu</au><au>Chen, Huajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Perceived Multi-modal Pretraining in E-commerce</atitle><jtitle>arXiv.org</jtitle><date>2021-08-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we address multi-modal pretraining of product data in the field of E-commerce. Current multi-modal pretraining methods proposed for image and text modalities lack robustness in the face of modality-missing and modality-noise, which are two pervasive problems of multi-modal product data in real E-commerce scenarios. To this end, we propose a novel method, K3M, which introduces knowledge modality in multi-modal pretraining to correct the noise and supplement the missing of image and text modalities. The modal-encoding layer extracts the features of each modality. The modal-interaction layer is capable of effectively modeling the interaction of multiple modalities, where an initial-interactive feature fusion model is designed to maintain the independence of image modality and text modality, and a structure aggregation module is designed to fuse the information of image, text, and knowledge modalities. We pretrain K3M with three pretraining tasks, including masked object modeling (MOM), masked language modeling (MLM), and link prediction modeling (LPM). Experimental results on a real-world E-commerce dataset and a series of product-based downstream tasks demonstrate that K3M achieves significant improvements in performances than the baseline and state-of-the-art methods when modality-noise or modality-missing exists.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2109.00895</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2568816465
source Publicly Available Content Database
subjects Electronic commerce
Feature extraction
Modelling
Noise
Prediction models
title Knowledge Perceived Multi-modal Pretraining in E-commerce
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Perceived%20Multi-modal%20Pretraining%20in%20E-commerce&rft.jtitle=arXiv.org&rft.au=Zhu,%20Yushan&rft.date=2021-08-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2109.00895&rft_dat=%3Cproquest%3E2568816465%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-2154238a047865f4c11b2bc8d27884f7a91ee22b235f6953482df383c3fcd9eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568816465&rft_id=info:pmid/&rfr_iscdi=true