Loading…

Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles

This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized us...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automation and computing 2021-10, Vol.18 (5), p.802-813
Main Authors: Mousavi, Yashar, Zarei, Amin, Mousavi, Arash, Biari, Mohsen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03
cites cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03
container_end_page 813
container_issue 5
container_start_page 802
container_title International journal of automation and computing
container_volume 18
creator Mousavi, Yashar
Zarei, Amin
Mousavi, Arash
Biari, Mohsen
description This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.
doi_str_mv 10.1007/s11633-021-1282-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569063641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569063641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEElD4AHaWWBs8fiVZVuVRpKJK0HZrOY7TpkrtYqdI_XtcBYkVm5lZ3Htn5mTZHZAHICR_jACSMUwoYKAFxewsu4JcAC4EJedp5rnEBRTyMruOcUuIzGnJr7L2w1eH2KP5vm93ukPTdr2xAftQn2oVbfhOQ6WjrdHT0elda9Bn19atW6N3X1s08a4PvkOND2i1mM_Q0u20c0k-tqFNiSu7aU1n40120egu2tvfPsqWL8-LyRTP5q9vk_EMG8Z5j4XIeVnzApjNed6UVJPKpmvr9J6lApgpiJaaVcbUDTRMyAqMKUGYylhiCBtl90PuPvivg4292vpDcGmlokKWRDLJIalgUJngYwy2UfuQAISjAqJORNVAVCWi6kRUseShgycmrVvb8Jf8v-kHfrp4zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569063641</pqid></control><display><type>article</type><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><source>Alma/SFX Local Collection</source><creator>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</creator><creatorcontrib>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</creatorcontrib><description>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</description><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-021-1282-3</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; CAE) and Design ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Control stability ; Controllers ; Engineering ; Feedback control ; Heuristic methods ; Mechatronics ; Research Article ; Robotics ; Robustness ; Sliding mode control ; Stability analysis ; Tracking errors ; Unmanned aerial vehicles</subject><ispartof>International journal of automation and computing, 2021-10, Vol.18 (5), p.802-813</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</citedby><cites>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</cites><orcidid>0000-0002-6718-3599 ; 0000-0003-2326-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mousavi, Yashar</creatorcontrib><creatorcontrib>Zarei, Amin</creatorcontrib><creatorcontrib>Mousavi, Arash</creatorcontrib><creatorcontrib>Biari, Mohsen</creatorcontrib><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><description>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Heuristic methods</subject><subject>Mechatronics</subject><subject>Research Article</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Tracking errors</subject><subject>Unmanned aerial vehicles</subject><issn>1476-8186</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEElD4AHaWWBs8fiVZVuVRpKJK0HZrOY7TpkrtYqdI_XtcBYkVm5lZ3Htn5mTZHZAHICR_jACSMUwoYKAFxewsu4JcAC4EJedp5rnEBRTyMruOcUuIzGnJr7L2w1eH2KP5vm93ukPTdr2xAftQn2oVbfhOQ6WjrdHT0elda9Bn19atW6N3X1s08a4PvkOND2i1mM_Q0u20c0k-tqFNiSu7aU1n40120egu2tvfPsqWL8-LyRTP5q9vk_EMG8Z5j4XIeVnzApjNed6UVJPKpmvr9J6lApgpiJaaVcbUDTRMyAqMKUGYylhiCBtl90PuPvivg4292vpDcGmlokKWRDLJIalgUJngYwy2UfuQAISjAqJORNVAVCWi6kRUseShgycmrVvb8Jf8v-kHfrp4zA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mousavi, Yashar</creator><creator>Zarei, Amin</creator><creator>Mousavi, Arash</creator><creator>Biari, Mohsen</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6718-3599</orcidid><orcidid>https://orcid.org/0000-0003-2326-4431</orcidid></search><sort><creationdate>20211001</creationdate><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><author>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Heuristic methods</topic><topic>Mechatronics</topic><topic>Research Article</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Tracking errors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi, Yashar</creatorcontrib><creatorcontrib>Zarei, Amin</creatorcontrib><creatorcontrib>Mousavi, Arash</creatorcontrib><creatorcontrib>Biari, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousavi, Yashar</au><au>Zarei, Amin</au><au>Mousavi, Arash</au><au>Biari, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>802</spage><epage>813</epage><pages>802-813</pages><issn>1476-8186</issn><eissn>1751-8520</eissn><abstract>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-021-1282-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6718-3599</orcidid><orcidid>https://orcid.org/0000-0003-2326-4431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2021-10, Vol.18 (5), p.802-813
issn 1476-8186
1751-8520
language eng
recordid cdi_proquest_journals_2569063641
source Alma/SFX Local Collection
subjects Algorithms
CAE) and Design
Computer Applications
Computer-Aided Engineering (CAD
Control
Control stability
Controllers
Engineering
Feedback control
Heuristic methods
Mechatronics
Research Article
Robotics
Robustness
Sliding mode control
Stability analysis
Tracking errors
Unmanned aerial vehicles
title Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimal%20Higher-order-observer-based%20Dynamic%20Sliding%20Mode%20Control%20for%20VTOL%20Unmanned%20Aerial%20Vehicles&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Mousavi,%20Yashar&rft.date=2021-10-01&rft.volume=18&rft.issue=5&rft.spage=802&rft.epage=813&rft.pages=802-813&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-021-1282-3&rft_dat=%3Cproquest_cross%3E2569063641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569063641&rft_id=info:pmid/&rfr_iscdi=true