Loading…
Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles
This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized us...
Saved in:
Published in: | International journal of automation and computing 2021-10, Vol.18 (5), p.802-813 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03 |
container_end_page | 813 |
container_issue | 5 |
container_start_page | 802 |
container_title | International journal of automation and computing |
container_volume | 18 |
creator | Mousavi, Yashar Zarei, Amin Mousavi, Arash Biari, Mohsen |
description | This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches. |
doi_str_mv | 10.1007/s11633-021-1282-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569063641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569063641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEElD4AHaWWBs8fiVZVuVRpKJK0HZrOY7TpkrtYqdI_XtcBYkVm5lZ3Htn5mTZHZAHICR_jACSMUwoYKAFxewsu4JcAC4EJedp5rnEBRTyMruOcUuIzGnJr7L2w1eH2KP5vm93ukPTdr2xAftQn2oVbfhOQ6WjrdHT0elda9Bn19atW6N3X1s08a4PvkOND2i1mM_Q0u20c0k-tqFNiSu7aU1n40120egu2tvfPsqWL8-LyRTP5q9vk_EMG8Z5j4XIeVnzApjNed6UVJPKpmvr9J6lApgpiJaaVcbUDTRMyAqMKUGYylhiCBtl90PuPvivg4292vpDcGmlokKWRDLJIalgUJngYwy2UfuQAISjAqJORNVAVCWi6kRUseShgycmrVvb8Jf8v-kHfrp4zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569063641</pqid></control><display><type>article</type><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><source>Alma/SFX Local Collection</source><creator>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</creator><creatorcontrib>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</creatorcontrib><description>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</description><identifier>ISSN: 1476-8186</identifier><identifier>EISSN: 1751-8520</identifier><identifier>DOI: 10.1007/s11633-021-1282-3</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; CAE) and Design ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Control stability ; Controllers ; Engineering ; Feedback control ; Heuristic methods ; Mechatronics ; Research Article ; Robotics ; Robustness ; Sliding mode control ; Stability analysis ; Tracking errors ; Unmanned aerial vehicles</subject><ispartof>International journal of automation and computing, 2021-10, Vol.18 (5), p.802-813</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</citedby><cites>FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</cites><orcidid>0000-0002-6718-3599 ; 0000-0003-2326-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mousavi, Yashar</creatorcontrib><creatorcontrib>Zarei, Amin</creatorcontrib><creatorcontrib>Mousavi, Arash</creatorcontrib><creatorcontrib>Biari, Mohsen</creatorcontrib><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><description>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Heuristic methods</subject><subject>Mechatronics</subject><subject>Research Article</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Tracking errors</subject><subject>Unmanned aerial vehicles</subject><issn>1476-8186</issn><issn>1751-8520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEElD4AHaWWBs8fiVZVuVRpKJK0HZrOY7TpkrtYqdI_XtcBYkVm5lZ3Htn5mTZHZAHICR_jACSMUwoYKAFxewsu4JcAC4EJedp5rnEBRTyMruOcUuIzGnJr7L2w1eH2KP5vm93ukPTdr2xAftQn2oVbfhOQ6WjrdHT0elda9Bn19atW6N3X1s08a4PvkOND2i1mM_Q0u20c0k-tqFNiSu7aU1n40120egu2tvfPsqWL8-LyRTP5q9vk_EMG8Z5j4XIeVnzApjNed6UVJPKpmvr9J6lApgpiJaaVcbUDTRMyAqMKUGYylhiCBtl90PuPvivg4292vpDcGmlokKWRDLJIalgUJngYwy2UfuQAISjAqJORNVAVCWi6kRUseShgycmrVvb8Jf8v-kHfrp4zA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mousavi, Yashar</creator><creator>Zarei, Amin</creator><creator>Mousavi, Arash</creator><creator>Biari, Mohsen</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6718-3599</orcidid><orcidid>https://orcid.org/0000-0003-2326-4431</orcidid></search><sort><creationdate>20211001</creationdate><title>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</title><author>Mousavi, Yashar ; Zarei, Amin ; Mousavi, Arash ; Biari, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Heuristic methods</topic><topic>Mechatronics</topic><topic>Research Article</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Tracking errors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi, Yashar</creatorcontrib><creatorcontrib>Zarei, Amin</creatorcontrib><creatorcontrib>Mousavi, Arash</creatorcontrib><creatorcontrib>Biari, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousavi, Yashar</au><au>Zarei, Amin</au><au>Mousavi, Arash</au><au>Biari, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>802</spage><epage>813</epage><pages>802-813</pages><issn>1476-8186</issn><eissn>1751-8520</eissn><abstract>This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy’s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-021-1282-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6718-3599</orcidid><orcidid>https://orcid.org/0000-0003-2326-4431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-8186 |
ispartof | International journal of automation and computing, 2021-10, Vol.18 (5), p.802-813 |
issn | 1476-8186 1751-8520 |
language | eng |
recordid | cdi_proquest_journals_2569063641 |
source | Alma/SFX Local Collection |
subjects | Algorithms CAE) and Design Computer Applications Computer-Aided Engineering (CAD Control Control stability Controllers Engineering Feedback control Heuristic methods Mechatronics Research Article Robotics Robustness Sliding mode control Stability analysis Tracking errors Unmanned aerial vehicles |
title | Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimal%20Higher-order-observer-based%20Dynamic%20Sliding%20Mode%20Control%20for%20VTOL%20Unmanned%20Aerial%20Vehicles&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Mousavi,%20Yashar&rft.date=2021-10-01&rft.volume=18&rft.issue=5&rft.spage=802&rft.epage=813&rft.pages=802-813&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-021-1282-3&rft_dat=%3Cproquest_cross%3E2569063641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-55749d4813e747f92a0be067d633e2513c80a6a3bccdf1f356b1cc915cbce0c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569063641&rft_id=info:pmid/&rfr_iscdi=true |