Loading…
Developing centrifugal spun thermally cross‐linked gelatin based fibrous biomats for antibacterial wound dressing applications
Fibrous materials obtained from natural polymers, such as gelatin, have been used in medical applications due to their biocompatibility and biodegradability. Herein, free‐standing durable fibrous gelatin biomats with antibacterial activity were developed via a simple, low cost and fast production ro...
Saved in:
Published in: | Polymer engineering and science 2021-09, Vol.61 (9), p.2311-2322 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibrous materials obtained from natural polymers, such as gelatin, have been used in medical applications due to their biocompatibility and biodegradability. Herein, free‐standing durable fibrous gelatin biomats with antibacterial activity were developed via a simple, low cost and fast production route, centrifugal spinning, and subsequent thermal crosslinking. After a series of preliminary experiments, droplet−/bead‐free porous biomats with fine fibers, 3.41 ± 1.8 μm in diameter, were fabricated. Subsequently, antimicrobial biomats were produced by adding AgNO3 into the production solution. X‐ray diffractometer and energy dispersive X‐ray results showed Ag NPs existing as AgCl in the biomats, which could be attributed to chemical reaction between the Ag NPs and residual Cl in the impure gelatin. Later, both the neat‐gelatin and Ag‐gelatin biomats were thermally crosslinked at 170°C to gain stability against water. Although the Ag addition reduced ultimate tensile strength by half, from 881 to 495 kPa, the crosslinked biomats were robust enough to be used for wound dressing applications. They were also found to be highly breathable, with the air permeability of 256 and 81.2 mm/s, respectively. The biomats showed antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. The results show that the free‐standing fibrous‐gelatin‐based biomats produced is applicable for wound dressing applications.
Production of thermally crosslinked and highly air permeable fibrous gelatin biomats with antibacterial property. |
---|---|
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.25759 |