Loading…

Domain-based Latent Personal Analysis and its use for impersonation detection in social media

Zipf’s law defines an inverse proportion between a word’s ranking in a given corpus and its frequency in it, roughly dividing the vocabulary into frequent words and infrequent ones. Here, we stipulate that within a domain an author’s signature can be derived from, in loose terms, the author’s missin...

Full description

Saved in:
Bibliographic Details
Published in:User modeling and user-adapted interaction 2021-09, Vol.31 (4), p.785-828
Main Authors: Mokryn, Osnat, Ben-Shoshan, Hagit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zipf’s law defines an inverse proportion between a word’s ranking in a given corpus and its frequency in it, roughly dividing the vocabulary into frequent words and infrequent ones. Here, we stipulate that within a domain an author’s signature can be derived from, in loose terms, the author’s missing popular words and frequently used infrequent words. We devise a method, termed Latent Personal Analysis (LPA), for finding domain-based attributes for entities in a domain: their distance from the domain and their signature, which determines how they most differ from a domain. We identify the most suitable distance metric for the method among several and construct the distances and personal signatures for authors, the domain’s entities. The signature consists of both over-used terms (compared to the average) and missing popular terms. We validate the correctness and power of the signatures in identifying users and set existence conditions. We test LPA in several domains, both textual and non-textual. We then demonstrate the use of the method in explainable authorship attribution: we define algorithms that utilize LPA  to identify two types of impersonation in social media: (1) authors with sockpuppets (multiple) accounts and (2) front-users accounts, operated by several authors. We validate the algorithms and employ them over a large-scale dataset obtained from a social media site with over 4000 users. We corroborate these results using temporal rate analysis. LPA  can further be used to devise personal attributes in a wide range of scientific domains in which the constituents have a long-tail distribution of elements.
ISSN:0924-1868
1573-1391
DOI:10.1007/s11257-021-09295-7