Loading…

An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite

The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is pla...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405
Main Authors: Haq, Muhammad Aneeq, Song, Yoseb, Lee, Hansaem, Khalid, Muhammad Waqas, Jeong, Da-Woon, Park, Kee-Ryung, Kim, Bum Sung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983
cites cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983
container_end_page
container_issue
container_start_page 141405
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 818
creator Haq, Muhammad Aneeq
Song, Yoseb
Lee, Hansaem
Khalid, Muhammad Waqas
Jeong, Da-Woon
Park, Kee-Ryung
Kim, Bum Sung
description The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.
doi_str_mv 10.1016/j.msea.2021.141405
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569410628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321006742</els_id><sourcerecordid>2569410628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfBH6CyRJ3gVx6WaE4RB0gnoIDa8jkbcCBxsBMe_x5HoabaYmdmZz-EzilJKaH5ZZt2AXTKCKMpFVSQ7ACtaFnwREieH6IVkYwmGZH8GJ2E0BJCZtEKPW56bPsk2HHCehi80-YVN87jRu-9NXq0_QvuYfxy_g17sH3cGahx5Sq_hXuLOz16-42N6wYXU-AUHTX6PcDZ31yj5-31U3Wb7B5u7qrNLjGclWMiM1OUstTCyIxLLpo6ZwyaPSmoLApRF5oRYIIRHgW0oRqKPZAaeMYFZ7Lka3Sx5MbOHxOEUbVu8n08qViWS0FJzmYVW1TGuxA8NGrwttP-R1GiZnKqVTM5NZNTC7loulpMEPt_WvAqGAt9fNt6MKOqnf3P_gsPe3Xi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569410628</pqid></control><display><type>article</type><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</creator><creatorcontrib>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</creatorcontrib><description>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141405</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Core-shell ; Densification ; Flexural strength ; High entropy alloy ; High temperature ; Interfaces ; Liquid phase sintering ; Liquid phases ; Metal matrix composite ; Network microstructure ; Sintering ; Sintering (powder metallurgy)</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jun 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</citedby><cites>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</cites><orcidid>0000-0002-6250-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haq, Muhammad Aneeq</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Hansaem</creatorcontrib><creatorcontrib>Khalid, Muhammad Waqas</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><creatorcontrib>Park, Kee-Ryung</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</description><subject>Core-shell</subject><subject>Densification</subject><subject>Flexural strength</subject><subject>High entropy alloy</subject><subject>High temperature</subject><subject>Interfaces</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Metal matrix composite</subject><subject>Network microstructure</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EEsfBH6CyRJ3gVx6WaE4RB0gnoIDa8jkbcCBxsBMe_x5HoabaYmdmZz-EzilJKaH5ZZt2AXTKCKMpFVSQ7ACtaFnwREieH6IVkYwmGZH8GJ2E0BJCZtEKPW56bPsk2HHCehi80-YVN87jRu-9NXq0_QvuYfxy_g17sH3cGahx5Sq_hXuLOz16-42N6wYXU-AUHTX6PcDZ31yj5-31U3Wb7B5u7qrNLjGclWMiM1OUstTCyIxLLpo6ZwyaPSmoLApRF5oRYIIRHgW0oRqKPZAaeMYFZ7Lka3Sx5MbOHxOEUbVu8n08qViWS0FJzmYVW1TGuxA8NGrwttP-R1GiZnKqVTM5NZNTC7loulpMEPt_WvAqGAt9fNt6MKOqnf3P_gsPe3Xi</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Haq, Muhammad Aneeq</creator><creator>Song, Yoseb</creator><creator>Lee, Hansaem</creator><creator>Khalid, Muhammad Waqas</creator><creator>Jeong, Da-Woon</creator><creator>Park, Kee-Ryung</creator><creator>Kim, Bum Sung</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid></search><sort><creationdate>20210622</creationdate><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><author>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Core-shell</topic><topic>Densification</topic><topic>Flexural strength</topic><topic>High entropy alloy</topic><topic>High temperature</topic><topic>Interfaces</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Metal matrix composite</topic><topic>Network microstructure</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haq, Muhammad Aneeq</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Hansaem</creatorcontrib><creatorcontrib>Khalid, Muhammad Waqas</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><creatorcontrib>Park, Kee-Ryung</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haq, Muhammad Aneeq</au><au>Song, Yoseb</au><au>Lee, Hansaem</au><au>Khalid, Muhammad Waqas</au><au>Jeong, Da-Woon</au><au>Park, Kee-Ryung</au><au>Kim, Bum Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-06-22</date><risdate>2021</risdate><volume>818</volume><spage>141405</spage><pages>141405-</pages><artnum>141405</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141405</doi><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2569410628
source ScienceDirect Freedom Collection 2022-2024
subjects Core-shell
Densification
Flexural strength
High entropy alloy
High temperature
Interfaces
Liquid phase sintering
Liquid phases
Metal matrix composite
Network microstructure
Sintering
Sintering (powder metallurgy)
title An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in-situ%20approach%20for%20fabricating%20network%20reinforced%20CoCrFeNi%20matrix%20composite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Haq,%20Muhammad%20Aneeq&rft.date=2021-06-22&rft.volume=818&rft.spage=141405&rft.pages=141405-&rft.artnum=141405&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141405&rft_dat=%3Cproquest_cross%3E2569410628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569410628&rft_id=info:pmid/&rfr_iscdi=true