Loading…
An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite
The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is pla...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983 |
container_end_page | |
container_issue | |
container_start_page | 141405 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 818 |
creator | Haq, Muhammad Aneeq Song, Yoseb Lee, Hansaem Khalid, Muhammad Waqas Jeong, Da-Woon Park, Kee-Ryung Kim, Bum Sung |
description | The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively. |
doi_str_mv | 10.1016/j.msea.2021.141405 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569410628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321006742</els_id><sourcerecordid>2569410628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsfBH6CyRJ3gVx6WaE4RB0gnoIDa8jkbcCBxsBMe_x5HoabaYmdmZz-EzilJKaH5ZZt2AXTKCKMpFVSQ7ACtaFnwREieH6IVkYwmGZH8GJ2E0BJCZtEKPW56bPsk2HHCehi80-YVN87jRu-9NXq0_QvuYfxy_g17sH3cGahx5Sq_hXuLOz16-42N6wYXU-AUHTX6PcDZ31yj5-31U3Wb7B5u7qrNLjGclWMiM1OUstTCyIxLLpo6ZwyaPSmoLApRF5oRYIIRHgW0oRqKPZAaeMYFZ7Lka3Sx5MbOHxOEUbVu8n08qViWS0FJzmYVW1TGuxA8NGrwttP-R1GiZnKqVTM5NZNTC7loulpMEPt_WvAqGAt9fNt6MKOqnf3P_gsPe3Xi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569410628</pqid></control><display><type>article</type><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</creator><creatorcontrib>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</creatorcontrib><description>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141405</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Core-shell ; Densification ; Flexural strength ; High entropy alloy ; High temperature ; Interfaces ; Liquid phase sintering ; Liquid phases ; Metal matrix composite ; Network microstructure ; Sintering ; Sintering (powder metallurgy)</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jun 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</citedby><cites>FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</cites><orcidid>0000-0002-6250-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haq, Muhammad Aneeq</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Hansaem</creatorcontrib><creatorcontrib>Khalid, Muhammad Waqas</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><creatorcontrib>Park, Kee-Ryung</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</description><subject>Core-shell</subject><subject>Densification</subject><subject>Flexural strength</subject><subject>High entropy alloy</subject><subject>High temperature</subject><subject>Interfaces</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Metal matrix composite</subject><subject>Network microstructure</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EEsfBH6CyRJ3gVx6WaE4RB0gnoIDa8jkbcCBxsBMe_x5HoabaYmdmZz-EzilJKaH5ZZt2AXTKCKMpFVSQ7ACtaFnwREieH6IVkYwmGZH8GJ2E0BJCZtEKPW56bPsk2HHCehi80-YVN87jRu-9NXq0_QvuYfxy_g17sH3cGahx5Sq_hXuLOz16-42N6wYXU-AUHTX6PcDZ31yj5-31U3Wb7B5u7qrNLjGclWMiM1OUstTCyIxLLpo6ZwyaPSmoLApRF5oRYIIRHgW0oRqKPZAaeMYFZ7Lka3Sx5MbOHxOEUbVu8n08qViWS0FJzmYVW1TGuxA8NGrwttP-R1GiZnKqVTM5NZNTC7loulpMEPt_WvAqGAt9fNt6MKOqnf3P_gsPe3Xi</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Haq, Muhammad Aneeq</creator><creator>Song, Yoseb</creator><creator>Lee, Hansaem</creator><creator>Khalid, Muhammad Waqas</creator><creator>Jeong, Da-Woon</creator><creator>Park, Kee-Ryung</creator><creator>Kim, Bum Sung</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid></search><sort><creationdate>20210622</creationdate><title>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</title><author>Haq, Muhammad Aneeq ; Song, Yoseb ; Lee, Hansaem ; Khalid, Muhammad Waqas ; Jeong, Da-Woon ; Park, Kee-Ryung ; Kim, Bum Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Core-shell</topic><topic>Densification</topic><topic>Flexural strength</topic><topic>High entropy alloy</topic><topic>High temperature</topic><topic>Interfaces</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Metal matrix composite</topic><topic>Network microstructure</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haq, Muhammad Aneeq</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Hansaem</creatorcontrib><creatorcontrib>Khalid, Muhammad Waqas</creatorcontrib><creatorcontrib>Jeong, Da-Woon</creatorcontrib><creatorcontrib>Park, Kee-Ryung</creatorcontrib><creatorcontrib>Kim, Bum Sung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haq, Muhammad Aneeq</au><au>Song, Yoseb</au><au>Lee, Hansaem</au><au>Khalid, Muhammad Waqas</au><au>Jeong, Da-Woon</au><au>Park, Kee-Ryung</au><au>Kim, Bum Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-06-22</date><risdate>2021</risdate><volume>818</volume><spage>141405</spage><pages>141405-</pages><artnum>141405</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The CoCrFeNi HEAs offer immense promise for advanced engineering applications. However their strength at high temperatures needs much improvement. In an effort to strengthen the highly ductile matrix, here we report a CoCrFeNi composite in which a continuous network composed of TiN nanograins is placed around the FCC matrix. To accomplish this, initially a CoCrFeNi powder with an in-situ coating of TiN layers was fabricated. Afterwards, the sintering parameters for the designed powders were optimized. At higher sintering temperatures, liquid phase was introduced on the powder interfaces to achieve complete densification. Additionally, prolonged formation of the liquid phase lead to a robust particle-particle adhesion. The liquid infiltration at the interfaces directly influenced the strengthening and toughening of the composite. At optimal sintering conditions, the composite had a density, hardness and flexural strength of 7.49 g/cm3, 450 HV and of 1.78 GPa, respectively.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141405</doi><orcidid>https://orcid.org/0000-0002-6250-0233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.818, p.141405, Article 141405 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2569410628 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Core-shell Densification Flexural strength High entropy alloy High temperature Interfaces Liquid phase sintering Liquid phases Metal matrix composite Network microstructure Sintering Sintering (powder metallurgy) |
title | An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in-situ%20approach%20for%20fabricating%20network%20reinforced%20CoCrFeNi%20matrix%20composite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Haq,%20Muhammad%20Aneeq&rft.date=2021-06-22&rft.volume=818&rft.spage=141405&rft.pages=141405-&rft.artnum=141405&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141405&rft_dat=%3Cproquest_cross%3E2569410628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-95c7898a4c953934fd622efb0719774d7a20e24203c951f1ae7be0de353432983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569410628&rft_id=info:pmid/&rfr_iscdi=true |