Loading…

Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel

Additively manufactured precipitation hardened (PH) martensitic grade stainless steels display wide variations in their heat treatment response and mechanical properties. Much of this variability can be attributed to the selection of the atomizing gas and the resulting variations in powder compositi...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-06, Vol.817, p.141363, Article 141363
Main Authors: Shaffer, D.J., Wilson-Heid, A.E., Keist, J.S., Beese, A.M., Palmer, T.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03
cites cdi_FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03
container_end_page
container_issue
container_start_page 141363
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 817
creator Shaffer, D.J.
Wilson-Heid, A.E.
Keist, J.S.
Beese, A.M.
Palmer, T.A.
description Additively manufactured precipitation hardened (PH) martensitic grade stainless steels display wide variations in their heat treatment response and mechanical properties. Much of this variability can be attributed to the selection of the atomizing gas and the resulting variations in powder composition. Differences in nitrogen compositions present in argon and nitrogen atomized powders led to the formation of a wide range of retained austenite levels between 0 and 81 vol% and significant differences in mechanical properties in as-deposited and aged 17-4 PH grade stainless steels. Material fabricated using argon atomized powder contained little to no retained austenite and displayed mechanical properties in the peak-aged condition similar to those in wrought alloys (1359 ± 59 MPa ultimate tensile strength and 10.1 ± 0.8% elongation to failure). On the other hand, materials fabricated with nitrogen atomized powder displayed between 20% and 81% retained austenite, leading to discontinuous yielding driven by the strain-induced transformation of the retained austenite to martensite. Even with the presence of this discontinuous yielding, the materials fabricated using the nitrogen atomized powders consistently displayed strengths 300 MPa higher in the as-deposited, 200 MPa higher in the peak-aged, and 500 MPa higher in the over-aged conditions than materials fabricated using the argon atomized powders. By directly comparing the local strains and microstructures in nitrogen atomized materials, a [011]γ//[001]α relationship in line with the Bain transformation process was present between the retained austenite and transformed martensite across the as-deposited and aged conditions. [Display omitted]
doi_str_mv 10.1016/j.msea.2021.141363
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569411994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321006328</els_id><sourcerecordid>2569411994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgemquMxNwI0VtoaALXYd0clIzzKUmmULfxmfxyZyhrl3lQP7vP4cPoVtKFpTQ_L5etBHMghFGF1RQnvMzNKNlwTOheH6OZkQxmkmi-CW6irEmhFBB5Aw163ZvqoR7hwMk4zuw2AwxQecT4L7D6ROw2fluN_7Hfd9FmLLGWp_8AZojbk03uLFiCCNKi0z8fL-t8C4YCzhOjQ3EOE4AzTW6cKaJcPP3ztHH89P7cpVtXl_Wy8dNVvGCpSyXwrgt2AKclYIzKbdQGlZwbvKcMGG3QMpSKk64sGprjZUFL50BKJ1ThvA5ujv17kP_NUBMuu6H0I0rNZO5EpQqJcYUO6Wq0McYwOl98K0JR02JnqzqWk9W9WRVn6yO0MMJgvH-g4egY-Whq8D6AFXStvf_4b8N9YHl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569411994</pqid></control><display><type>article</type><title>Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel</title><source>ScienceDirect Freedom Collection</source><creator>Shaffer, D.J. ; Wilson-Heid, A.E. ; Keist, J.S. ; Beese, A.M. ; Palmer, T.A.</creator><creatorcontrib>Shaffer, D.J. ; Wilson-Heid, A.E. ; Keist, J.S. ; Beese, A.M. ; Palmer, T.A.</creatorcontrib><description>Additively manufactured precipitation hardened (PH) martensitic grade stainless steels display wide variations in their heat treatment response and mechanical properties. Much of this variability can be attributed to the selection of the atomizing gas and the resulting variations in powder composition. Differences in nitrogen compositions present in argon and nitrogen atomized powders led to the formation of a wide range of retained austenite levels between 0 and 81 vol% and significant differences in mechanical properties in as-deposited and aged 17-4 PH grade stainless steels. Material fabricated using argon atomized powder contained little to no retained austenite and displayed mechanical properties in the peak-aged condition similar to those in wrought alloys (1359 ± 59 MPa ultimate tensile strength and 10.1 ± 0.8% elongation to failure). On the other hand, materials fabricated with nitrogen atomized powder displayed between 20% and 81% retained austenite, leading to discontinuous yielding driven by the strain-induced transformation of the retained austenite to martensite. Even with the presence of this discontinuous yielding, the materials fabricated using the nitrogen atomized powders consistently displayed strengths 300 MPa higher in the as-deposited, 200 MPa higher in the peak-aged, and 500 MPa higher in the over-aged conditions than materials fabricated using the argon atomized powders. By directly comparing the local strains and microstructures in nitrogen atomized materials, a [011]γ//[001]α relationship in line with the Bain transformation process was present between the retained austenite and transformed martensite across the as-deposited and aged conditions. [Display omitted]</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141363</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>17-4 PH ; Additive manufacturing ; Aging (metallurgy) ; Argon ; Atomizing ; Bainitic transformations ; Composition ; Elongation ; Heat treatment ; Martensite ; Martensitic stainless steels ; Martensitic transformations ; Mechanical properties ; Nitrogen ; Precipitation hardening ; Precipitation hardening steels ; Retained austenite ; Stainless steel ; Strain induced phase transformation ; Ultimate tensile strength ; Wrought alloys</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.817, p.141363, Article 141363</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 10, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03</citedby><cites>FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03</cites><orcidid>0000-0002-7022-3387 ; 0000-0001-9573-3319 ; 0000-0003-2646-4607 ; 0000-0002-6809-1688 ; 0000-0001-6759-0090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Shaffer, D.J.</creatorcontrib><creatorcontrib>Wilson-Heid, A.E.</creatorcontrib><creatorcontrib>Keist, J.S.</creatorcontrib><creatorcontrib>Beese, A.M.</creatorcontrib><creatorcontrib>Palmer, T.A.</creatorcontrib><title>Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Additively manufactured precipitation hardened (PH) martensitic grade stainless steels display wide variations in their heat treatment response and mechanical properties. Much of this variability can be attributed to the selection of the atomizing gas and the resulting variations in powder composition. Differences in nitrogen compositions present in argon and nitrogen atomized powders led to the formation of a wide range of retained austenite levels between 0 and 81 vol% and significant differences in mechanical properties in as-deposited and aged 17-4 PH grade stainless steels. Material fabricated using argon atomized powder contained little to no retained austenite and displayed mechanical properties in the peak-aged condition similar to those in wrought alloys (1359 ± 59 MPa ultimate tensile strength and 10.1 ± 0.8% elongation to failure). On the other hand, materials fabricated with nitrogen atomized powder displayed between 20% and 81% retained austenite, leading to discontinuous yielding driven by the strain-induced transformation of the retained austenite to martensite. Even with the presence of this discontinuous yielding, the materials fabricated using the nitrogen atomized powders consistently displayed strengths 300 MPa higher in the as-deposited, 200 MPa higher in the peak-aged, and 500 MPa higher in the over-aged conditions than materials fabricated using the argon atomized powders. By directly comparing the local strains and microstructures in nitrogen atomized materials, a [011]γ//[001]α relationship in line with the Bain transformation process was present between the retained austenite and transformed martensite across the as-deposited and aged conditions. [Display omitted]</description><subject>17-4 PH</subject><subject>Additive manufacturing</subject><subject>Aging (metallurgy)</subject><subject>Argon</subject><subject>Atomizing</subject><subject>Bainitic transformations</subject><subject>Composition</subject><subject>Elongation</subject><subject>Heat treatment</subject><subject>Martensite</subject><subject>Martensitic stainless steels</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Nitrogen</subject><subject>Precipitation hardening</subject><subject>Precipitation hardening steels</subject><subject>Retained austenite</subject><subject>Stainless steel</subject><subject>Strain induced phase transformation</subject><subject>Ultimate tensile strength</subject><subject>Wrought alloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgemquMxNwI0VtoaALXYd0clIzzKUmmULfxmfxyZyhrl3lQP7vP4cPoVtKFpTQ_L5etBHMghFGF1RQnvMzNKNlwTOheH6OZkQxmkmi-CW6irEmhFBB5Aw163ZvqoR7hwMk4zuw2AwxQecT4L7D6ROw2fluN_7Hfd9FmLLGWp_8AZojbk03uLFiCCNKi0z8fL-t8C4YCzhOjQ3EOE4AzTW6cKaJcPP3ztHH89P7cpVtXl_Wy8dNVvGCpSyXwrgt2AKclYIzKbdQGlZwbvKcMGG3QMpSKk64sGprjZUFL50BKJ1ThvA5ujv17kP_NUBMuu6H0I0rNZO5EpQqJcYUO6Wq0McYwOl98K0JR02JnqzqWk9W9WRVn6yO0MMJgvH-g4egY-Whq8D6AFXStvf_4b8N9YHl</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Shaffer, D.J.</creator><creator>Wilson-Heid, A.E.</creator><creator>Keist, J.S.</creator><creator>Beese, A.M.</creator><creator>Palmer, T.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7022-3387</orcidid><orcidid>https://orcid.org/0000-0001-9573-3319</orcidid><orcidid>https://orcid.org/0000-0003-2646-4607</orcidid><orcidid>https://orcid.org/0000-0002-6809-1688</orcidid><orcidid>https://orcid.org/0000-0001-6759-0090</orcidid></search><sort><creationdate>20210610</creationdate><title>Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel</title><author>Shaffer, D.J. ; Wilson-Heid, A.E. ; Keist, J.S. ; Beese, A.M. ; Palmer, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>17-4 PH</topic><topic>Additive manufacturing</topic><topic>Aging (metallurgy)</topic><topic>Argon</topic><topic>Atomizing</topic><topic>Bainitic transformations</topic><topic>Composition</topic><topic>Elongation</topic><topic>Heat treatment</topic><topic>Martensite</topic><topic>Martensitic stainless steels</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Nitrogen</topic><topic>Precipitation hardening</topic><topic>Precipitation hardening steels</topic><topic>Retained austenite</topic><topic>Stainless steel</topic><topic>Strain induced phase transformation</topic><topic>Ultimate tensile strength</topic><topic>Wrought alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaffer, D.J.</creatorcontrib><creatorcontrib>Wilson-Heid, A.E.</creatorcontrib><creatorcontrib>Keist, J.S.</creatorcontrib><creatorcontrib>Beese, A.M.</creatorcontrib><creatorcontrib>Palmer, T.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaffer, D.J.</au><au>Wilson-Heid, A.E.</au><au>Keist, J.S.</au><au>Beese, A.M.</au><au>Palmer, T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>817</volume><spage>141363</spage><pages>141363-</pages><artnum>141363</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Additively manufactured precipitation hardened (PH) martensitic grade stainless steels display wide variations in their heat treatment response and mechanical properties. Much of this variability can be attributed to the selection of the atomizing gas and the resulting variations in powder composition. Differences in nitrogen compositions present in argon and nitrogen atomized powders led to the formation of a wide range of retained austenite levels between 0 and 81 vol% and significant differences in mechanical properties in as-deposited and aged 17-4 PH grade stainless steels. Material fabricated using argon atomized powder contained little to no retained austenite and displayed mechanical properties in the peak-aged condition similar to those in wrought alloys (1359 ± 59 MPa ultimate tensile strength and 10.1 ± 0.8% elongation to failure). On the other hand, materials fabricated with nitrogen atomized powder displayed between 20% and 81% retained austenite, leading to discontinuous yielding driven by the strain-induced transformation of the retained austenite to martensite. Even with the presence of this discontinuous yielding, the materials fabricated using the nitrogen atomized powders consistently displayed strengths 300 MPa higher in the as-deposited, 200 MPa higher in the peak-aged, and 500 MPa higher in the over-aged conditions than materials fabricated using the argon atomized powders. By directly comparing the local strains and microstructures in nitrogen atomized materials, a [011]γ//[001]α relationship in line with the Bain transformation process was present between the retained austenite and transformed martensite across the as-deposited and aged conditions. [Display omitted]</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141363</doi><orcidid>https://orcid.org/0000-0002-7022-3387</orcidid><orcidid>https://orcid.org/0000-0001-9573-3319</orcidid><orcidid>https://orcid.org/0000-0003-2646-4607</orcidid><orcidid>https://orcid.org/0000-0002-6809-1688</orcidid><orcidid>https://orcid.org/0000-0001-6759-0090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-06, Vol.817, p.141363, Article 141363
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2569411994
source ScienceDirect Freedom Collection
subjects 17-4 PH
Additive manufacturing
Aging (metallurgy)
Argon
Atomizing
Bainitic transformations
Composition
Elongation
Heat treatment
Martensite
Martensitic stainless steels
Martensitic transformations
Mechanical properties
Nitrogen
Precipitation hardening
Precipitation hardening steels
Retained austenite
Stainless steel
Strain induced phase transformation
Ultimate tensile strength
Wrought alloys
title Impact of retained austenite on the aging response of additively manufactured 17-4 PH grade stainless steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20retained%20austenite%20on%20the%20aging%20response%20of%20additively%20manufactured%2017-4%C2%A0PH%20grade%20stainless%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Shaffer,%20D.J.&rft.date=2021-06-10&rft.volume=817&rft.spage=141363&rft.pages=141363-&rft.artnum=141363&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141363&rft_dat=%3Cproquest_cross%3E2569411994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-654afbed7efd543255be8a2733a66024dbe088593034d9bdad5738faee8ff9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569411994&rft_id=info:pmid/&rfr_iscdi=true