Loading…

Convolutional neural network for people counting using UWB impulse radar

People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of instrumentation 2021-08, Vol.16 (8), p.P08031
Main Authors: Pham, C.-T., Luong, V.S., Nguyen, D.-K., Vu, H.H.T., Le, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283
cites cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283
container_end_page
container_issue 8
container_start_page P08031
container_title Journal of instrumentation
container_volume 16
creator Pham, C.-T.
Luong, V.S.
Nguyen, D.-K.
Vu, H.H.T.
Le, M.
description People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.
doi_str_mv 10.1088/1748-0221/16/08/P08031
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2569680513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569680513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BQl4rp2kmzQ96qKusKAHF49h2qbStdvUpFH899taUW9e5s0w8x7DR8g5g0sGSsUsXagIOGcxkzGo-BEUJOyAzH4Wh3_6Y3Li_RZAZGIBM7Ja2vbdNqGvbYsNbU1wX9J_WPdKK-toZ2zXGFrY0PZ1-0KDH-vm-ZrWuy403lCHJbpTclThMJ1965xsbm-elqto_XB3v7xaR0XCZR-pDE2R54AsRZEXJaaqQlGmJTNcZflCSqlKqRKEvOJVyQslysykmKOEDLlK5uRiyu2cfQvG93prgxt-95oLmUkFgiXDlZyuCme9d6bSnat36D41Az1S0yMQPQLRTGpQeqI2GPlkrG33m_yPaQ9pyW_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569680513</pqid></control><display><type>article</type><title>Convolutional neural network for people counting using UWB impulse radar</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</creator><creatorcontrib>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</creatorcontrib><description>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/16/08/P08031</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Clutter ; Data processing methods ; Feature extraction ; Instruments for environmental monitoring, food control and medical use ; Neural networks ; Shopping malls ; Signal processing ; Ultrawideband radar</subject><ispartof>Journal of instrumentation, 2021-08, Vol.16 (8), p.P08031</ispartof><rights>2021 IOP Publishing Ltd and Sissa Medialab</rights><rights>Copyright IOP Publishing Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</citedby><cites>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pham, C.-T.</creatorcontrib><creatorcontrib>Luong, V.S.</creatorcontrib><creatorcontrib>Nguyen, D.-K.</creatorcontrib><creatorcontrib>Vu, H.H.T.</creatorcontrib><creatorcontrib>Le, M.</creatorcontrib><title>Convolutional neural network for people counting using UWB impulse radar</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</description><subject>Artificial neural networks</subject><subject>Clutter</subject><subject>Data processing methods</subject><subject>Feature extraction</subject><subject>Instruments for environmental monitoring, food control and medical use</subject><subject>Neural networks</subject><subject>Shopping malls</subject><subject>Signal processing</subject><subject>Ultrawideband radar</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BQl4rp2kmzQ96qKusKAHF49h2qbStdvUpFH899taUW9e5s0w8x7DR8g5g0sGSsUsXagIOGcxkzGo-BEUJOyAzH4Wh3_6Y3Li_RZAZGIBM7Ja2vbdNqGvbYsNbU1wX9J_WPdKK-toZ2zXGFrY0PZ1-0KDH-vm-ZrWuy403lCHJbpTclThMJ1965xsbm-elqto_XB3v7xaR0XCZR-pDE2R54AsRZEXJaaqQlGmJTNcZflCSqlKqRKEvOJVyQslysykmKOEDLlK5uRiyu2cfQvG93prgxt-95oLmUkFgiXDlZyuCme9d6bSnat36D41Az1S0yMQPQLRTGpQeqI2GPlkrG33m_yPaQ9pyW_C</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Pham, C.-T.</creator><creator>Luong, V.S.</creator><creator>Nguyen, D.-K.</creator><creator>Vu, H.H.T.</creator><creator>Le, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210801</creationdate><title>Convolutional neural network for people counting using UWB impulse radar</title><author>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Clutter</topic><topic>Data processing methods</topic><topic>Feature extraction</topic><topic>Instruments for environmental monitoring, food control and medical use</topic><topic>Neural networks</topic><topic>Shopping malls</topic><topic>Signal processing</topic><topic>Ultrawideband radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, C.-T.</creatorcontrib><creatorcontrib>Luong, V.S.</creatorcontrib><creatorcontrib>Nguyen, D.-K.</creatorcontrib><creatorcontrib>Vu, H.H.T.</creatorcontrib><creatorcontrib>Le, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, C.-T.</au><au>Luong, V.S.</au><au>Nguyen, D.-K.</au><au>Vu, H.H.T.</au><au>Le, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network for people counting using UWB impulse radar</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>P08031</spage><pages>P08031-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/16/08/P08031</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2021-08, Vol.16 (8), p.P08031
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2569680513
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Artificial neural networks
Clutter
Data processing methods
Feature extraction
Instruments for environmental monitoring, food control and medical use
Neural networks
Shopping malls
Signal processing
Ultrawideband radar
title Convolutional neural network for people counting using UWB impulse radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20for%20people%20counting%20using%20UWB%20impulse%20radar&rft.jtitle=Journal%20of%20instrumentation&rft.au=Pham,%20C.-T.&rft.date=2021-08-01&rft.volume=16&rft.issue=8&rft.spage=P08031&rft.pages=P08031-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/16/08/P08031&rft_dat=%3Cproquest_iop_j%3E2569680513%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569680513&rft_id=info:pmid/&rfr_iscdi=true