Loading…
Convolutional neural network for people counting using UWB impulse radar
People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing...
Saved in:
Published in: | Journal of instrumentation 2021-08, Vol.16 (8), p.P08031 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283 |
container_end_page | |
container_issue | 8 |
container_start_page | P08031 |
container_title | Journal of instrumentation |
container_volume | 16 |
creator | Pham, C.-T. Luong, V.S. Nguyen, D.-K. Vu, H.H.T. Le, M. |
description | People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated. |
doi_str_mv | 10.1088/1748-0221/16/08/P08031 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2569680513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569680513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BQl4rp2kmzQ96qKusKAHF49h2qbStdvUpFH899taUW9e5s0w8x7DR8g5g0sGSsUsXagIOGcxkzGo-BEUJOyAzH4Wh3_6Y3Li_RZAZGIBM7Ja2vbdNqGvbYsNbU1wX9J_WPdKK-toZ2zXGFrY0PZ1-0KDH-vm-ZrWuy403lCHJbpTclThMJ1965xsbm-elqto_XB3v7xaR0XCZR-pDE2R54AsRZEXJaaqQlGmJTNcZflCSqlKqRKEvOJVyQslysykmKOEDLlK5uRiyu2cfQvG93prgxt-95oLmUkFgiXDlZyuCme9d6bSnat36D41Az1S0yMQPQLRTGpQeqI2GPlkrG33m_yPaQ9pyW_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569680513</pqid></control><display><type>article</type><title>Convolutional neural network for people counting using UWB impulse radar</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</creator><creatorcontrib>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</creatorcontrib><description>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/16/08/P08031</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Clutter ; Data processing methods ; Feature extraction ; Instruments for environmental monitoring, food control and medical use ; Neural networks ; Shopping malls ; Signal processing ; Ultrawideband radar</subject><ispartof>Journal of instrumentation, 2021-08, Vol.16 (8), p.P08031</ispartof><rights>2021 IOP Publishing Ltd and Sissa Medialab</rights><rights>Copyright IOP Publishing Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</citedby><cites>FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pham, C.-T.</creatorcontrib><creatorcontrib>Luong, V.S.</creatorcontrib><creatorcontrib>Nguyen, D.-K.</creatorcontrib><creatorcontrib>Vu, H.H.T.</creatorcontrib><creatorcontrib>Le, M.</creatorcontrib><title>Convolutional neural network for people counting using UWB impulse radar</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</description><subject>Artificial neural networks</subject><subject>Clutter</subject><subject>Data processing methods</subject><subject>Feature extraction</subject><subject>Instruments for environmental monitoring, food control and medical use</subject><subject>Neural networks</subject><subject>Shopping malls</subject><subject>Signal processing</subject><subject>Ultrawideband radar</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BQl4rp2kmzQ96qKusKAHF49h2qbStdvUpFH899taUW9e5s0w8x7DR8g5g0sGSsUsXagIOGcxkzGo-BEUJOyAzH4Wh3_6Y3Li_RZAZGIBM7Ja2vbdNqGvbYsNbU1wX9J_WPdKK-toZ2zXGFrY0PZ1-0KDH-vm-ZrWuy403lCHJbpTclThMJ1965xsbm-elqto_XB3v7xaR0XCZR-pDE2R54AsRZEXJaaqQlGmJTNcZflCSqlKqRKEvOJVyQslysykmKOEDLlK5uRiyu2cfQvG93prgxt-95oLmUkFgiXDlZyuCme9d6bSnat36D41Az1S0yMQPQLRTGpQeqI2GPlkrG33m_yPaQ9pyW_C</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Pham, C.-T.</creator><creator>Luong, V.S.</creator><creator>Nguyen, D.-K.</creator><creator>Vu, H.H.T.</creator><creator>Le, M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210801</creationdate><title>Convolutional neural network for people counting using UWB impulse radar</title><author>Pham, C.-T. ; Luong, V.S. ; Nguyen, D.-K. ; Vu, H.H.T. ; Le, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Clutter</topic><topic>Data processing methods</topic><topic>Feature extraction</topic><topic>Instruments for environmental monitoring, food control and medical use</topic><topic>Neural networks</topic><topic>Shopping malls</topic><topic>Signal processing</topic><topic>Ultrawideband radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, C.-T.</creatorcontrib><creatorcontrib>Luong, V.S.</creatorcontrib><creatorcontrib>Nguyen, D.-K.</creatorcontrib><creatorcontrib>Vu, H.H.T.</creatorcontrib><creatorcontrib>Le, M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, C.-T.</au><au>Luong, V.S.</au><au>Nguyen, D.-K.</au><au>Vu, H.H.T.</au><au>Le, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network for people counting using UWB impulse radar</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>P08031</spage><pages>P08031-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>People counting plays a crucial role in various sensing applications such as in smart cities and shopping malls. In this paper, we propose a data-driven solution that uses a low power ultra-wideband impulse (UWB) radar to count the number of random walking people in an indoor space. A pre-processing signal processing method is applied to clean clutter signals from UWB radar. Instead of the conventional counting methods, which manually extract features and learned from effective data patterns, we investigated deep convolutional neural networks (CNNs) that automatically learn from the data to count the number of people in an indoor space. The CNN model could accurately predict up to 97% accuracy for up to 10 people random walking in an area of 5 × 5 m. The different settings of the CNN models, such as the data input window size, and kernel size in each layer, will be investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/16/08/P08031</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2021-08, Vol.16 (8), p.P08031 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2569680513 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Artificial neural networks Clutter Data processing methods Feature extraction Instruments for environmental monitoring, food control and medical use Neural networks Shopping malls Signal processing Ultrawideband radar |
title | Convolutional neural network for people counting using UWB impulse radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20for%20people%20counting%20using%20UWB%20impulse%20radar&rft.jtitle=Journal%20of%20instrumentation&rft.au=Pham,%20C.-T.&rft.date=2021-08-01&rft.volume=16&rft.issue=8&rft.spage=P08031&rft.pages=P08031-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/16/08/P08031&rft_dat=%3Cproquest_iop_j%3E2569680513%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-89aecbb0a17a5bcda78fa5d7d1e289b46668d683a0bf2fd2c85d9e7aba609a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2569680513&rft_id=info:pmid/&rfr_iscdi=true |