Loading…
CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS
An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric....
Saved in:
Published in: | Transformation groups 2021-09, Vol.26 (3), p.859-892 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513 |
container_end_page | 892 |
container_issue | 3 |
container_start_page | 859 |
container_title | Transformation groups |
container_volume | 26 |
creator | FRANCIS-STAITE, KELLI LEISTNER, THOMAS |
description | An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to
sl
2
ℂ
and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2,
n
− 2) are conformally Einstein. |
doi_str_mv | 10.1007/s00031-020-09561-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570148793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570148793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13duzEYwgJWGqTKg2IzUoaB1FBW-x24O0JBImN6U6n7_9P-gi5RLhGgOjGAwBHCgwoKCGRqiMyQTGcRCyfj4cdYk5DLtkpOfN-DYCRlHJCorQs8rKaJ7NgUZWLrKp1tgzKPNDFXZbrQtdZcKupLp6SSidFHcyzutLp8pyc9M2btxe_c0oe86xOH-isvNdpMqMrjmpPW9WBsh1jXYTctrhqI-xCxmKlmhak5IpDI6BXoVAYYw9WdbILFetbYTuBfEquxt6d234crN-b9fbgNsNLw0QEGMaR4gPFRmrltt4725ude31v3KdBMN-CzCjIDILMjyCjhhAfQ36ANy_W_VX_k_oCP8thyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570148793</pqid></control><display><type>article</type><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><source>Springer Nature</source><creator>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</creator><creatorcontrib>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</creatorcontrib><description>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to
sl
2
ℂ
and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2,
n
− 2) are conformally Einstein.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-020-09561-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Invariants ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Questions ; Topological Groups</subject><ispartof>Transformation groups, 2021-09, Vol.26 (3), p.859-892</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</citedby><cites>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>FRANCIS-STAITE, KELLI</creatorcontrib><creatorcontrib>LEISTNER, THOMAS</creatorcontrib><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to
sl
2
ℂ
and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2,
n
− 2) are conformally Einstein.</description><subject>Algebra</subject><subject>Invariants</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13duzEYwgJWGqTKg2IzUoaB1FBW-x24O0JBImN6U6n7_9P-gi5RLhGgOjGAwBHCgwoKCGRqiMyQTGcRCyfj4cdYk5DLtkpOfN-DYCRlHJCorQs8rKaJ7NgUZWLrKp1tgzKPNDFXZbrQtdZcKupLp6SSidFHcyzutLp8pyc9M2btxe_c0oe86xOH-isvNdpMqMrjmpPW9WBsh1jXYTctrhqI-xCxmKlmhak5IpDI6BXoVAYYw9WdbILFetbYTuBfEquxt6d234crN-b9fbgNsNLw0QEGMaR4gPFRmrltt4725ude31v3KdBMN-CzCjIDILMjyCjhhAfQ36ANy_W_VX_k_oCP8thyg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>FRANCIS-STAITE, KELLI</creator><creator>LEISTNER, THOMAS</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><author>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Invariants</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRANCIS-STAITE, KELLI</creatorcontrib><creatorcontrib>LEISTNER, THOMAS</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRANCIS-STAITE, KELLI</au><au>LEISTNER, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>859</spage><epage>892</epage><pages>859-892</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to
sl
2
ℂ
and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2,
n
− 2) are conformally Einstein.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-020-09561-9</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4362 |
ispartof | Transformation groups, 2021-09, Vol.26 (3), p.859-892 |
issn | 1083-4362 1531-586X |
language | eng |
recordid | cdi_proquest_journals_2570148793 |
source | Springer Nature |
subjects | Algebra Invariants Lie Groups Mathematics Mathematics and Statistics Questions Topological Groups |
title | CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONFORMAL%20PROPERTIES%20OF%20INDEFINITE%20BI-INVARIANT%20METRICS&rft.jtitle=Transformation%20groups&rft.au=FRANCIS-STAITE,%20KELLI&rft.date=2021-09-01&rft.volume=26&rft.issue=3&rft.spage=859&rft.epage=892&rft.pages=859-892&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-020-09561-9&rft_dat=%3Cproquest_cross%3E2570148793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570148793&rft_id=info:pmid/&rfr_iscdi=true |