Loading…

CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS

An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric....

Full description

Saved in:
Bibliographic Details
Published in:Transformation groups 2021-09, Vol.26 (3), p.859-892
Main Authors: FRANCIS-STAITE, KELLI, LEISTNER, THOMAS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513
cites cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513
container_end_page 892
container_issue 3
container_start_page 859
container_title Transformation groups
container_volume 26
creator FRANCIS-STAITE, KELLI
LEISTNER, THOMAS
description An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to sl 2 ℂ and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2, n − 2) are conformally Einstein.
doi_str_mv 10.1007/s00031-020-09561-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570148793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570148793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13duzEYwgJWGqTKg2IzUoaB1FBW-x24O0JBImN6U6n7_9P-gi5RLhGgOjGAwBHCgwoKCGRqiMyQTGcRCyfj4cdYk5DLtkpOfN-DYCRlHJCorQs8rKaJ7NgUZWLrKp1tgzKPNDFXZbrQtdZcKupLp6SSidFHcyzutLp8pyc9M2btxe_c0oe86xOH-isvNdpMqMrjmpPW9WBsh1jXYTctrhqI-xCxmKlmhak5IpDI6BXoVAYYw9WdbILFetbYTuBfEquxt6d234crN-b9fbgNsNLw0QEGMaR4gPFRmrltt4725ude31v3KdBMN-CzCjIDILMjyCjhhAfQ36ANy_W_VX_k_oCP8thyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570148793</pqid></control><display><type>article</type><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><source>Springer Nature</source><creator>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</creator><creatorcontrib>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</creatorcontrib><description>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to sl 2 ℂ and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2, n − 2) are conformally Einstein.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-020-09561-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Invariants ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Questions ; Topological Groups</subject><ispartof>Transformation groups, 2021-09, Vol.26 (3), p.859-892</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</citedby><cites>FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>FRANCIS-STAITE, KELLI</creatorcontrib><creatorcontrib>LEISTNER, THOMAS</creatorcontrib><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to sl 2 ℂ and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2, n − 2) are conformally Einstein.</description><subject>Algebra</subject><subject>Invariants</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmA13duzEYwgJWGqTKg2IzUoaB1FBW-x24O0JBImN6U6n7_9P-gi5RLhGgOjGAwBHCgwoKCGRqiMyQTGcRCyfj4cdYk5DLtkpOfN-DYCRlHJCorQs8rKaJ7NgUZWLrKp1tgzKPNDFXZbrQtdZcKupLp6SSidFHcyzutLp8pyc9M2btxe_c0oe86xOH-isvNdpMqMrjmpPW9WBsh1jXYTctrhqI-xCxmKlmhak5IpDI6BXoVAYYw9WdbILFetbYTuBfEquxt6d234crN-b9fbgNsNLw0QEGMaR4gPFRmrltt4725ude31v3KdBMN-CzCjIDILMjyCjhhAfQ36ANy_W_VX_k_oCP8thyg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>FRANCIS-STAITE, KELLI</creator><creator>LEISTNER, THOMAS</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</title><author>FRANCIS-STAITE, KELLI ; LEISTNER, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Invariants</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRANCIS-STAITE, KELLI</creatorcontrib><creatorcontrib>LEISTNER, THOMAS</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRANCIS-STAITE, KELLI</au><au>LEISTNER, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>859</spage><epage>892</epage><pages>859-892</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>An indecomposable Lie group with Riemannian bi-invariant metric is always simple and hence Einstein. Indefinite bi-invariant metrics are not necessarily Einstein, not even on simple Lie groups. We study the question of whether a semi-Riemannian bi-invariant metric is conformal to an Einstein metric. We obtain results for all three cases in the structure theorem by Medina and Revoy for indecomposable metric Lie algebras: the case of simple Lie algebras, and the cases of double extensions of metric Lie algebras by ℝ or a simple Lie algebra. Simple Lie algebras are conformally Einstein precisely when they are Einstein, or when equal to sl 2 ℂ and conformally flat. Double extensions of metric Lie algebras by simple Lie algebras of rank greater than one are never conformally Einstein, and neither are double extensions of Lorentzian oscillator algebras, whereas the oscillator algebras themselves are conformally Einstein. Our results give a complete answer to the question of which metric Lie algebras in Lorentzian signature and in signature (2, n − 2) are conformally Einstein.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-020-09561-9</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2021-09, Vol.26 (3), p.859-892
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2570148793
source Springer Nature
subjects Algebra
Invariants
Lie Groups
Mathematics
Mathematics and Statistics
Questions
Topological Groups
title CONFORMAL PROPERTIES OF INDEFINITE BI-INVARIANT METRICS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONFORMAL%20PROPERTIES%20OF%20INDEFINITE%20BI-INVARIANT%20METRICS&rft.jtitle=Transformation%20groups&rft.au=FRANCIS-STAITE,%20KELLI&rft.date=2021-09-01&rft.volume=26&rft.issue=3&rft.spage=859&rft.epage=892&rft.pages=859-892&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-020-09561-9&rft_dat=%3Cproquest_cross%3E2570148793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b9d09ed22d713eb1cb71d422899ab0663930a50f9459181f0e9d6d492fb5ed513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570148793&rft_id=info:pmid/&rfr_iscdi=true