Loading…
Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration
Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and net...
Saved in:
Published in: | Computer-aided civil and infrastructure engineering 2021-10, Vol.36 (10), p.1270-1287 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3 |
container_end_page | 1287 |
container_issue | 10 |
container_start_page | 1270 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 36 |
creator | Kuok, Sin‐Chi Yuen, Ka‐Veng |
description | Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented. |
doi_str_mv | 10.1111/mice.12663 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570163212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570163212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</originalsourceid><addsrcrecordid>eNp9kE9Pg0AQxYnRxFq9-Ak28aIm6P4BFo7SVG1S40XPZFiGdhtgcRfS1E_vVjz7LjOT_Gbe5AXBNaMPzOux1QofGE8ScRLMWJTIME0Seep7mokwS1J5Hlw4t6NeUSRmQZ9bAxXJ4YBOQ0caBNvpbkNu83x9R2pjSWe6Hiy0OFitSG9NCaVutBv81JoKmyO-18OWmH7Qrf7GioBVWz2gGkaLRJmu1pvRwqBNdxmc1dA4vPqr8-DzefmxeA3X7y-rxdM6VIIyEWKWcJA8TisqqwyYqngaAWeoKAIwjOo0xjhDoCVWMoqkyqK4lKKsaC14XYp5cDPd9Q9_jeiGYmdG23nLgseSskRwxj11P1HKGucs1kVvdQv2UDBaHBMtjokWv4l6mE3wXjd4-Ics3laL5bTzAxXLeuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570163212</pqid></control><display><type>article</type><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><source>Wiley</source><creator>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</creator><creatorcontrib>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</creatorcontrib><description>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12663</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Augmentation ; Bayesian analysis ; Computer architecture ; Configurations ; Machine learning ; Neural networks ; Nonparametric statistics ; Optimization ; Probabilistic models ; Statistical analysis ; Structural health monitoring</subject><ispartof>Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1270-1287</ispartof><rights>2021</rights><rights>2021 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</citedby><cites>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</cites><orcidid>0000-0001-7363-6761 ; 0000-0002-1755-6668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuok, Sin‐Chi</creatorcontrib><creatorcontrib>Yuen, Ka‐Veng</creatorcontrib><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><title>Computer-aided civil and infrastructure engineering</title><description>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</description><subject>Augmentation</subject><subject>Bayesian analysis</subject><subject>Computer architecture</subject><subject>Configurations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonparametric statistics</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Statistical analysis</subject><subject>Structural health monitoring</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Pg0AQxYnRxFq9-Ak28aIm6P4BFo7SVG1S40XPZFiGdhtgcRfS1E_vVjz7LjOT_Gbe5AXBNaMPzOux1QofGE8ScRLMWJTIME0Seep7mokwS1J5Hlw4t6NeUSRmQZ9bAxXJ4YBOQ0caBNvpbkNu83x9R2pjSWe6Hiy0OFitSG9NCaVutBv81JoKmyO-18OWmH7Qrf7GioBVWz2gGkaLRJmu1pvRwqBNdxmc1dA4vPqr8-DzefmxeA3X7y-rxdM6VIIyEWKWcJA8TisqqwyYqngaAWeoKAIwjOo0xjhDoCVWMoqkyqK4lKKsaC14XYp5cDPd9Q9_jeiGYmdG23nLgseSskRwxj11P1HKGucs1kVvdQv2UDBaHBMtjokWv4l6mE3wXjd4-Ics3laL5bTzAxXLeuc</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kuok, Sin‐Chi</creator><creator>Yuen, Ka‐Veng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7363-6761</orcidid><orcidid>https://orcid.org/0000-0002-1755-6668</orcidid></search><sort><creationdate>202110</creationdate><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><author>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmentation</topic><topic>Bayesian analysis</topic><topic>Computer architecture</topic><topic>Configurations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonparametric statistics</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Statistical analysis</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuok, Sin‐Chi</creatorcontrib><creatorcontrib>Yuen, Ka‐Veng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuok, Sin‐Chi</au><au>Yuen, Ka‐Veng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2021-10</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>1270</spage><epage>1287</epage><pages>1270-1287</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12663</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7363-6761</orcidid><orcidid>https://orcid.org/0000-0002-1755-6668</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1270-1287 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2570163212 |
source | Wiley |
subjects | Augmentation Bayesian analysis Computer architecture Configurations Machine learning Neural networks Nonparametric statistics Optimization Probabilistic models Statistical analysis Structural health monitoring |
title | Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad%20Bayesian%20learning%20(BBL)%20for%20nonparametric%20probabilistic%20modeling%20with%20optimized%20architecture%20configuration&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Kuok,%20Sin%E2%80%90Chi&rft.date=2021-10&rft.volume=36&rft.issue=10&rft.spage=1270&rft.epage=1287&rft.pages=1270-1287&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12663&rft_dat=%3Cproquest_cross%3E2570163212%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570163212&rft_id=info:pmid/&rfr_iscdi=true |