Loading…

Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration

Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and net...

Full description

Saved in:
Bibliographic Details
Published in:Computer-aided civil and infrastructure engineering 2021-10, Vol.36 (10), p.1270-1287
Main Authors: Kuok, Sin‐Chi, Yuen, Ka‐Veng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3
cites cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3
container_end_page 1287
container_issue 10
container_start_page 1270
container_title Computer-aided civil and infrastructure engineering
container_volume 36
creator Kuok, Sin‐Chi
Yuen, Ka‐Veng
description Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.
doi_str_mv 10.1111/mice.12663
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570163212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570163212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</originalsourceid><addsrcrecordid>eNp9kE9Pg0AQxYnRxFq9-Ak28aIm6P4BFo7SVG1S40XPZFiGdhtgcRfS1E_vVjz7LjOT_Gbe5AXBNaMPzOux1QofGE8ScRLMWJTIME0Seep7mokwS1J5Hlw4t6NeUSRmQZ9bAxXJ4YBOQ0caBNvpbkNu83x9R2pjSWe6Hiy0OFitSG9NCaVutBv81JoKmyO-18OWmH7Qrf7GioBVWz2gGkaLRJmu1pvRwqBNdxmc1dA4vPqr8-DzefmxeA3X7y-rxdM6VIIyEWKWcJA8TisqqwyYqngaAWeoKAIwjOo0xjhDoCVWMoqkyqK4lKKsaC14XYp5cDPd9Q9_jeiGYmdG23nLgseSskRwxj11P1HKGucs1kVvdQv2UDBaHBMtjokWv4l6mE3wXjd4-Ics3laL5bTzAxXLeuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570163212</pqid></control><display><type>article</type><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><source>Wiley</source><creator>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</creator><creatorcontrib>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</creatorcontrib><description>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12663</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Augmentation ; Bayesian analysis ; Computer architecture ; Configurations ; Machine learning ; Neural networks ; Nonparametric statistics ; Optimization ; Probabilistic models ; Statistical analysis ; Structural health monitoring</subject><ispartof>Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1270-1287</ispartof><rights>2021</rights><rights>2021 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</citedby><cites>FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</cites><orcidid>0000-0001-7363-6761 ; 0000-0002-1755-6668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuok, Sin‐Chi</creatorcontrib><creatorcontrib>Yuen, Ka‐Veng</creatorcontrib><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><title>Computer-aided civil and infrastructure engineering</title><description>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</description><subject>Augmentation</subject><subject>Bayesian analysis</subject><subject>Computer architecture</subject><subject>Configurations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonparametric statistics</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Statistical analysis</subject><subject>Structural health monitoring</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Pg0AQxYnRxFq9-Ak28aIm6P4BFo7SVG1S40XPZFiGdhtgcRfS1E_vVjz7LjOT_Gbe5AXBNaMPzOux1QofGE8ScRLMWJTIME0Seep7mokwS1J5Hlw4t6NeUSRmQZ9bAxXJ4YBOQ0caBNvpbkNu83x9R2pjSWe6Hiy0OFitSG9NCaVutBv81JoKmyO-18OWmH7Qrf7GioBVWz2gGkaLRJmu1pvRwqBNdxmc1dA4vPqr8-DzefmxeA3X7y-rxdM6VIIyEWKWcJA8TisqqwyYqngaAWeoKAIwjOo0xjhDoCVWMoqkyqK4lKKsaC14XYp5cDPd9Q9_jeiGYmdG23nLgseSskRwxj11P1HKGucs1kVvdQv2UDBaHBMtjokWv4l6mE3wXjd4-Ics3laL5bTzAxXLeuc</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kuok, Sin‐Chi</creator><creator>Yuen, Ka‐Veng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7363-6761</orcidid><orcidid>https://orcid.org/0000-0002-1755-6668</orcidid></search><sort><creationdate>202110</creationdate><title>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</title><author>Kuok, Sin‐Chi ; Yuen, Ka‐Veng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Augmentation</topic><topic>Bayesian analysis</topic><topic>Computer architecture</topic><topic>Configurations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonparametric statistics</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Statistical analysis</topic><topic>Structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuok, Sin‐Chi</creatorcontrib><creatorcontrib>Yuen, Ka‐Veng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuok, Sin‐Chi</au><au>Yuen, Ka‐Veng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2021-10</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>1270</spage><epage>1287</epage><pages>1270-1287</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>Broad Bayesian learning (BBL), a novel probabilistic Bayesian neural network methodology with optimized architecture configuration, is proposed. It has an expandable feedforward broad learning network. Therefore, the uncertain estimates can be quantified in terms of probability distributions and network architecture augmentation can be adopted incrementally by use of the inherited information from the previously trained network. Furthermore, a learning network architecture configuration optimization scheme is proposed to determine the optimal architecture configuration. Based on the plausibilities of the concerned configurations, the most plausible one can be obtained, and it indicates the proper augmentation to develop the optimal configuration. To demonstrate the proposed methodology, three simulation examples and an application with in‐field structural health monitoring measurement are presented.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12663</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7363-6761</orcidid><orcidid>https://orcid.org/0000-0002-1755-6668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1270-1287
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2570163212
source Wiley
subjects Augmentation
Bayesian analysis
Computer architecture
Configurations
Machine learning
Neural networks
Nonparametric statistics
Optimization
Probabilistic models
Statistical analysis
Structural health monitoring
title Broad Bayesian learning (BBL) for nonparametric probabilistic modeling with optimized architecture configuration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad%20Bayesian%20learning%20(BBL)%20for%20nonparametric%20probabilistic%20modeling%20with%20optimized%20architecture%20configuration&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Kuok,%20Sin%E2%80%90Chi&rft.date=2021-10&rft.volume=36&rft.issue=10&rft.spage=1270&rft.epage=1287&rft.pages=1270-1287&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12663&rft_dat=%3Cproquest_cross%3E2570163212%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3013-e962a7258d07d9a1cd284a21ec0eaa1e4f85e59ea0bed7447c945b73bd0f32fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570163212&rft_id=info:pmid/&rfr_iscdi=true