Loading…
Material survey for a millimeter-wave absorber using a 3D-printed mold
Radio absorptive materials (RAMs) are key elements for receivers in the millimeter-wave range. We previously established a method for production of RAM by using a 3D-printed mold. An advantage of this method is a wide range of choices for absorptive materials to be used. To take advantage of this fl...
Saved in:
Published in: | Applied optics (2004) 2021-09, Vol.60 (25), p.7678 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radio absorptive materials (RAMs) are key elements for receivers in the millimeter-wave range. We previously established a method for production of RAM by using a 3D-printed mold. An advantage of this method is a wide range of choices for absorptive materials to be used. To take advantage of this flexibility, we added a range of absorptive materials to a base epoxy resin, STYCAST-2850FT, and examined the optical performance of the resultant RAM across a wide frequency range under cryogenic conditions. We found that adding a particular type of carbon fiber produced the best performance with a reflectance at 77 K estimated as 0.01%–3% over a frequency range of 20–300 GHz. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.433254 |