Loading…
Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory
The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electro...
Saved in:
Published in: | Journal of experimental and theoretical physics 2021-07, Vol.133 (1), p.1-6 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3 |
container_end_page | 6 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of experimental and theoretical physics |
container_volume | 133 |
creator | Petrovic, V. M Delibasic, H. S Petrovic, I. D |
description | The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate. |
doi_str_mv | 10.1134/S1063776121060078 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570438613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A674826901</galeid><sourcerecordid>A674826901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</originalsourceid><addsrcrecordid>eNp1kcFu2zAMQI1iA9al-4DdDPS0gzPKkmX5mLVNFyDA0CY7G5xFO0oTqZVsoOmp_9A_7JdUaQoMxTDwIFJ8jxLAJPnKYMwYF98XDCQvS8nymACU6ig5ZlBBJguoPuxzybN9_1PyOYQ1AKgcquPkatF7Z7tsamij0-VgLW2M7dKZs-YBe-Nseo09pT8wkE5jNUercXh-fDrf3awspUuPNphXcLki53cnyccWN4G-vJ2j5Pf0Ynn2M5v_upydTeZZw1XVZ2WuCykFFKhZpVTDRSP-5FprpkGqtlIkFGouAARWhSAhUTcIilomiqJAPkpOD3NvvbsbKPT12g3exifrvChBcCUZj9T4QHW4odrY1vUemxiatqZxlloT7yeyFCqXFbAofHsnRKan-77DIYR6trh-z7ID23gXgqe2vvVmi35XM6j3a6n_WUt08oMTIms78n-__X_pBSygjXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438613</pqid></control><display><type>article</type><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><source>Springer Link</source><creator>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</creator><creatorcontrib>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</creatorcontrib><description>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776121060078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atoms ; Classical and Quantum Gravitation ; Comparative analysis ; Elementary Particles ; Helium atoms ; Ionization ; Ionization potentials ; Lasers ; Linear polarization ; Molecules ; Optics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Shape effects ; Solid State Physics</subject><ispartof>Journal of experimental and theoretical physics, 2021-07, Vol.133 (1), p.1-6</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2021, Vol. 133, No. 1, pp. 1–6. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2021, Vol. 160, No. 1, pp. 5–12.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</citedby><cites>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Petrovic, V. M</creatorcontrib><creatorcontrib>Delibasic, H. S</creatorcontrib><creatorcontrib>Petrovic, I. D</creatorcontrib><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</description><subject>Atoms</subject><subject>Classical and Quantum Gravitation</subject><subject>Comparative analysis</subject><subject>Elementary Particles</subject><subject>Helium atoms</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Lasers</subject><subject>Linear polarization</subject><subject>Molecules</subject><subject>Optics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Shape effects</subject><subject>Solid State Physics</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu2zAMQI1iA9al-4DdDPS0gzPKkmX5mLVNFyDA0CY7G5xFO0oTqZVsoOmp_9A_7JdUaQoMxTDwIFJ8jxLAJPnKYMwYF98XDCQvS8nymACU6ig5ZlBBJguoPuxzybN9_1PyOYQ1AKgcquPkatF7Z7tsamij0-VgLW2M7dKZs-YBe-Nseo09pT8wkE5jNUercXh-fDrf3awspUuPNphXcLki53cnyccWN4G-vJ2j5Pf0Ynn2M5v_upydTeZZw1XVZ2WuCykFFKhZpVTDRSP-5FprpkGqtlIkFGouAARWhSAhUTcIilomiqJAPkpOD3NvvbsbKPT12g3exifrvChBcCUZj9T4QHW4odrY1vUemxiatqZxlloT7yeyFCqXFbAofHsnRKan-77DIYR6trh-z7ID23gXgqe2vvVmi35XM6j3a6n_WUt08oMTIms78n-__X_pBSygjXI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Petrovic, V. M</creator><creator>Delibasic, H. S</creator><creator>Petrovic, I. D</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210701</creationdate><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><author>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atoms</topic><topic>Classical and Quantum Gravitation</topic><topic>Comparative analysis</topic><topic>Elementary Particles</topic><topic>Helium atoms</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Lasers</topic><topic>Linear polarization</topic><topic>Molecules</topic><topic>Optics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Shape effects</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, V. M</creatorcontrib><creatorcontrib>Delibasic, H. S</creatorcontrib><creatorcontrib>Petrovic, I. D</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, V. M</au><au>Delibasic, H. S</au><au>Petrovic, I. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>133</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776121060078</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2021-07, Vol.133 (1), p.1-6 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_proquest_journals_2570438613 |
source | Springer Link |
subjects | Atoms Classical and Quantum Gravitation Comparative analysis Elementary Particles Helium atoms Ionization Ionization potentials Lasers Linear polarization Molecules Optics Particle and Nuclear Physics Physics Physics and Astronomy Quantum Field Theory Relativity Theory Shape effects Solid State Physics |
title | Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-Field%20Tunneling%20Ionization%20Rate%20Based%20on%20Landau%E2%80%93Dykhne%20Transition%20Theory&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Petrovic,%20V.%20M&rft.date=2021-07-01&rft.volume=133&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776121060078&rft_dat=%3Cgale_proqu%3EA674826901%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570438613&rft_id=info:pmid/&rft_galeid=A674826901&rfr_iscdi=true |