Loading…

Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory

The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental and theoretical physics 2021-07, Vol.133 (1), p.1-6
Main Authors: Petrovic, V. M, Delibasic, H. S, Petrovic, I. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3
cites cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3
container_end_page 6
container_issue 1
container_start_page 1
container_title Journal of experimental and theoretical physics
container_volume 133
creator Petrovic, V. M
Delibasic, H. S
Petrovic, I. D
description The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.
doi_str_mv 10.1134/S1063776121060078
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570438613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A674826901</galeid><sourcerecordid>A674826901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</originalsourceid><addsrcrecordid>eNp1kcFu2zAMQI1iA9al-4DdDPS0gzPKkmX5mLVNFyDA0CY7G5xFO0oTqZVsoOmp_9A_7JdUaQoMxTDwIFJ8jxLAJPnKYMwYF98XDCQvS8nymACU6ig5ZlBBJguoPuxzybN9_1PyOYQ1AKgcquPkatF7Z7tsamij0-VgLW2M7dKZs-YBe-Nseo09pT8wkE5jNUercXh-fDrf3awspUuPNphXcLki53cnyccWN4G-vJ2j5Pf0Ynn2M5v_upydTeZZw1XVZ2WuCykFFKhZpVTDRSP-5FprpkGqtlIkFGouAARWhSAhUTcIilomiqJAPkpOD3NvvbsbKPT12g3exifrvChBcCUZj9T4QHW4odrY1vUemxiatqZxlloT7yeyFCqXFbAofHsnRKan-77DIYR6trh-z7ID23gXgqe2vvVmi35XM6j3a6n_WUt08oMTIms78n-__X_pBSygjXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438613</pqid></control><display><type>article</type><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><source>Springer Link</source><creator>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</creator><creatorcontrib>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</creatorcontrib><description>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776121060078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atoms ; Classical and Quantum Gravitation ; Comparative analysis ; Elementary Particles ; Helium atoms ; Ionization ; Ionization potentials ; Lasers ; Linear polarization ; Molecules ; Optics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Shape effects ; Solid State Physics</subject><ispartof>Journal of experimental and theoretical physics, 2021-07, Vol.133 (1), p.1-6</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2021, Vol. 133, No. 1, pp. 1–6. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2021, Vol. 160, No. 1, pp. 5–12.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</citedby><cites>FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Petrovic, V. M</creatorcontrib><creatorcontrib>Delibasic, H. S</creatorcontrib><creatorcontrib>Petrovic, I. D</creatorcontrib><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</description><subject>Atoms</subject><subject>Classical and Quantum Gravitation</subject><subject>Comparative analysis</subject><subject>Elementary Particles</subject><subject>Helium atoms</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Lasers</subject><subject>Linear polarization</subject><subject>Molecules</subject><subject>Optics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Shape effects</subject><subject>Solid State Physics</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu2zAMQI1iA9al-4DdDPS0gzPKkmX5mLVNFyDA0CY7G5xFO0oTqZVsoOmp_9A_7JdUaQoMxTDwIFJ8jxLAJPnKYMwYF98XDCQvS8nymACU6ig5ZlBBJguoPuxzybN9_1PyOYQ1AKgcquPkatF7Z7tsamij0-VgLW2M7dKZs-YBe-Nseo09pT8wkE5jNUercXh-fDrf3awspUuPNphXcLki53cnyccWN4G-vJ2j5Pf0Ynn2M5v_upydTeZZw1XVZ2WuCykFFKhZpVTDRSP-5FprpkGqtlIkFGouAARWhSAhUTcIilomiqJAPkpOD3NvvbsbKPT12g3exifrvChBcCUZj9T4QHW4odrY1vUemxiatqZxlloT7yeyFCqXFbAofHsnRKan-77DIYR6trh-z7ID23gXgqe2vvVmi35XM6j3a6n_WUt08oMTIms78n-__X_pBSygjXI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Petrovic, V. M</creator><creator>Delibasic, H. S</creator><creator>Petrovic, I. D</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210701</creationdate><title>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</title><author>Petrovic, V. M ; Delibasic, H. S ; Petrovic, I. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atoms</topic><topic>Classical and Quantum Gravitation</topic><topic>Comparative analysis</topic><topic>Elementary Particles</topic><topic>Helium atoms</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Lasers</topic><topic>Linear polarization</topic><topic>Molecules</topic><topic>Optics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Shape effects</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, V. M</creatorcontrib><creatorcontrib>Delibasic, H. S</creatorcontrib><creatorcontrib>Petrovic, I. D</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, V. M</au><au>Delibasic, H. S</au><au>Petrovic, I. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>133</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The ionization of a helium atom and helium like atoms in a linearly polarized low-frequency laser field is investigated by the Landau–Dykhne transition theory. The tunneling rate’s formula for the trigonometric pulse envelope linearly polarized laser field is obtained, by taking into account electrons correlation in the ground state and the Coulomb correction. The obtained curve is compared with the Ammosov–Delone–Krainov theory. The curve displays a good flow but overestimates the Ammosov–Delone–Krainov one. Additionally, we analyzed different wavelengths, as well as the influence of the corrected ionization potential by including the ponderomotive shift. Our analysis shows that the inclusion of the additional terms in the ionization potential decreases rate, and that the properties of the beam shape has an effect on the ionization rate. We also find that the ionization rate is very sensitive to the value of laser wavelength (frequency) and the parabolic coordinate.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776121060078</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2021-07, Vol.133 (1), p.1-6
issn 1063-7761
1090-6509
language eng
recordid cdi_proquest_journals_2570438613
source Springer Link
subjects Atoms
Classical and Quantum Gravitation
Comparative analysis
Elementary Particles
Helium atoms
Ionization
Ionization potentials
Lasers
Linear polarization
Molecules
Optics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Shape effects
Solid State Physics
title Strong-Field Tunneling Ionization Rate Based on Landau–Dykhne Transition Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-Field%20Tunneling%20Ionization%20Rate%20Based%20on%20Landau%E2%80%93Dykhne%20Transition%20Theory&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Petrovic,%20V.%20M&rft.date=2021-07-01&rft.volume=133&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776121060078&rft_dat=%3Cgale_proqu%3EA674826901%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-72d566405ad1988c34c4b2ddd1d068f98e48ad34004a954e46adca08ef14555a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570438613&rft_id=info:pmid/&rft_galeid=A674826901&rfr_iscdi=true