Loading…

Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation

Production and characterization of geopolymers prepared by mixing metakaolin, end-of-life dolomite refractories, sodium silicate solution, and sodium hydroxide solution have been performed. The as-received refractory was crumbled in order to obtain products having, respectively, 250 μm, 1 mm, and 2....

Full description

Saved in:
Bibliographic Details
Published in:Journal of sustainable metallurgy 2021-09, Vol.7 (3), p.908-919
Main Authors: Furlani, E., Rondinella, A., Aneggi, E., Maschio, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863
cites cdi_FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863
container_end_page 919
container_issue 3
container_start_page 908
container_title Journal of sustainable metallurgy
container_volume 7
creator Furlani, E.
Rondinella, A.
Aneggi, E.
Maschio, S.
description Production and characterization of geopolymers prepared by mixing metakaolin, end-of-life dolomite refractories, sodium silicate solution, and sodium hydroxide solution have been performed. The as-received refractory was crumbled in order to obtain products having, respectively, 250 μm, 1 mm, and 2.5 mm maximum particles size. Each batch of powder was added in different proportions to a blank geopolymeric matrix. It has been observed that the addition of waste refractory reduces workability of the reference refractory-free slurry. After hardening, only the set of samples prepared with powders with maximum size of 250 μm maintain integrity while the others resulted affected by the presence of fractures caused by volumetric instabilities; samples with composition R100 showed the highest compressive strength, whereas higher refractory addition lowers strength. Specific surface area appears independent by materials composition; conversely pore volume slightly increases with the addition of dolomite refractory powder. During the thermodilatometric tests all compositions display a shrinkage of about 0.1% between 170 and 400 °C; however, sintering starts at higher temperature (above 600 °C) and samples melt in the range between 650 and 750 °C as a function of their composition, thus showing that the resulting materials loose refractoriness with respect to both the reference geopolymer and the dolomite refractory. Graphical Abstract
doi_str_mv 10.1007/s40831-021-00383-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570438756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570438756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRULR_wFPAc3SSbLJbb1rrBxQsoueQZid1ZbtZk620d3-4WSt68xAmA-8zMzxZdsrgnAEUFzGHUjAKPD0QpaCbveyIs_GYpobt__65OMxGMb4BAC9EXhTsKPuc-xjrRYPkCe3WNnW7JN6RaVtR7-isdkhufONXdT8kXDC296HGSBZb0r8imQdfrW1f-3bA7tB3vtmuMNBrE7EiE7_qfExwvCTTTYehXmHbm4Y8tB8Y-3ppBvQkO3CmiTj6qcfZy-30eXJPZ493D5OrGbVCiZ4qWTFVsQUfO1UJpRAMSAaVkcrlCwHcWIvOWiXB5chL6aQzOeSqyFHKUonj7Gw3twv-fZ326ze_Dm1aqbksIBdlIYcU36VsSG4COt2ls03YagZ6EK53wnUSrr-F602CxA6KKdwuMfyN_of6Avw5hbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438756</pqid></control><display><type>article</type><title>Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation</title><source>Springer Nature</source><creator>Furlani, E. ; Rondinella, A. ; Aneggi, E. ; Maschio, S.</creator><creatorcontrib>Furlani, E. ; Rondinella, A. ; Aneggi, E. ; Maschio, S.</creatorcontrib><description>Production and characterization of geopolymers prepared by mixing metakaolin, end-of-life dolomite refractories, sodium silicate solution, and sodium hydroxide solution have been performed. The as-received refractory was crumbled in order to obtain products having, respectively, 250 μm, 1 mm, and 2.5 mm maximum particles size. Each batch of powder was added in different proportions to a blank geopolymeric matrix. It has been observed that the addition of waste refractory reduces workability of the reference refractory-free slurry. After hardening, only the set of samples prepared with powders with maximum size of 250 μm maintain integrity while the others resulted affected by the presence of fractures caused by volumetric instabilities; samples with composition R100 showed the highest compressive strength, whereas higher refractory addition lowers strength. Specific surface area appears independent by materials composition; conversely pore volume slightly increases with the addition of dolomite refractory powder. During the thermodilatometric tests all compositions display a shrinkage of about 0.1% between 170 and 400 °C; however, sintering starts at higher temperature (above 600 °C) and samples melt in the range between 650 and 750 °C as a function of their composition, thus showing that the resulting materials loose refractoriness with respect to both the reference geopolymer and the dolomite refractory. Graphical Abstract</description><identifier>ISSN: 2199-3823</identifier><identifier>EISSN: 2199-3831</identifier><identifier>DOI: 10.1007/s40831-021-00383-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Composition ; Compressive strength ; Dolomite ; Earth and Environmental Science ; End of life ; Environment ; Fractures ; Geopolymers ; Metakaolin ; Metallic Materials ; Research Article ; Siliceous refractories ; Sintering (powder metallurgy) ; Sodium hydroxide ; Sodium silicates ; Sustainable Development ; Thermal resistance ; Workability</subject><ispartof>Journal of sustainable metallurgy, 2021-09, Vol.7 (3), p.908-919</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863</citedby><cites>FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863</cites><orcidid>0000-0001-5729-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Furlani, E.</creatorcontrib><creatorcontrib>Rondinella, A.</creatorcontrib><creatorcontrib>Aneggi, E.</creatorcontrib><creatorcontrib>Maschio, S.</creatorcontrib><title>Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation</title><title>Journal of sustainable metallurgy</title><addtitle>J. Sustain. Metall</addtitle><description>Production and characterization of geopolymers prepared by mixing metakaolin, end-of-life dolomite refractories, sodium silicate solution, and sodium hydroxide solution have been performed. The as-received refractory was crumbled in order to obtain products having, respectively, 250 μm, 1 mm, and 2.5 mm maximum particles size. Each batch of powder was added in different proportions to a blank geopolymeric matrix. It has been observed that the addition of waste refractory reduces workability of the reference refractory-free slurry. After hardening, only the set of samples prepared with powders with maximum size of 250 μm maintain integrity while the others resulted affected by the presence of fractures caused by volumetric instabilities; samples with composition R100 showed the highest compressive strength, whereas higher refractory addition lowers strength. Specific surface area appears independent by materials composition; conversely pore volume slightly increases with the addition of dolomite refractory powder. During the thermodilatometric tests all compositions display a shrinkage of about 0.1% between 170 and 400 °C; however, sintering starts at higher temperature (above 600 °C) and samples melt in the range between 650 and 750 °C as a function of their composition, thus showing that the resulting materials loose refractoriness with respect to both the reference geopolymer and the dolomite refractory. Graphical Abstract</description><subject>Composition</subject><subject>Compressive strength</subject><subject>Dolomite</subject><subject>Earth and Environmental Science</subject><subject>End of life</subject><subject>Environment</subject><subject>Fractures</subject><subject>Geopolymers</subject><subject>Metakaolin</subject><subject>Metallic Materials</subject><subject>Research Article</subject><subject>Siliceous refractories</subject><subject>Sintering (powder metallurgy)</subject><subject>Sodium hydroxide</subject><subject>Sodium silicates</subject><subject>Sustainable Development</subject><subject>Thermal resistance</subject><subject>Workability</subject><issn>2199-3823</issn><issn>2199-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRULR_wFPAc3SSbLJbb1rrBxQsoueQZid1ZbtZk620d3-4WSt68xAmA-8zMzxZdsrgnAEUFzGHUjAKPD0QpaCbveyIs_GYpobt__65OMxGMb4BAC9EXhTsKPuc-xjrRYPkCe3WNnW7JN6RaVtR7-isdkhufONXdT8kXDC296HGSBZb0r8imQdfrW1f-3bA7tB3vtmuMNBrE7EiE7_qfExwvCTTTYehXmHbm4Y8tB8Y-3ppBvQkO3CmiTj6qcfZy-30eXJPZ493D5OrGbVCiZ4qWTFVsQUfO1UJpRAMSAaVkcrlCwHcWIvOWiXB5chL6aQzOeSqyFHKUonj7Gw3twv-fZ326ze_Dm1aqbksIBdlIYcU36VsSG4COt2ls03YagZ6EK53wnUSrr-F602CxA6KKdwuMfyN_of6Avw5hbc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Furlani, E.</creator><creator>Rondinella, A.</creator><creator>Aneggi, E.</creator><creator>Maschio, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5729-3244</orcidid></search><sort><creationdate>20210901</creationdate><title>Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation</title><author>Furlani, E. ; Rondinella, A. ; Aneggi, E. ; Maschio, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composition</topic><topic>Compressive strength</topic><topic>Dolomite</topic><topic>Earth and Environmental Science</topic><topic>End of life</topic><topic>Environment</topic><topic>Fractures</topic><topic>Geopolymers</topic><topic>Metakaolin</topic><topic>Metallic Materials</topic><topic>Research Article</topic><topic>Siliceous refractories</topic><topic>Sintering (powder metallurgy)</topic><topic>Sodium hydroxide</topic><topic>Sodium silicates</topic><topic>Sustainable Development</topic><topic>Thermal resistance</topic><topic>Workability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlani, E.</creatorcontrib><creatorcontrib>Rondinella, A.</creatorcontrib><creatorcontrib>Aneggi, E.</creatorcontrib><creatorcontrib>Maschio, S.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of sustainable metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlani, E.</au><au>Rondinella, A.</au><au>Aneggi, E.</au><au>Maschio, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation</atitle><jtitle>Journal of sustainable metallurgy</jtitle><stitle>J. Sustain. Metall</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><spage>908</spage><epage>919</epage><pages>908-919</pages><issn>2199-3823</issn><eissn>2199-3831</eissn><abstract>Production and characterization of geopolymers prepared by mixing metakaolin, end-of-life dolomite refractories, sodium silicate solution, and sodium hydroxide solution have been performed. The as-received refractory was crumbled in order to obtain products having, respectively, 250 μm, 1 mm, and 2.5 mm maximum particles size. Each batch of powder was added in different proportions to a blank geopolymeric matrix. It has been observed that the addition of waste refractory reduces workability of the reference refractory-free slurry. After hardening, only the set of samples prepared with powders with maximum size of 250 μm maintain integrity while the others resulted affected by the presence of fractures caused by volumetric instabilities; samples with composition R100 showed the highest compressive strength, whereas higher refractory addition lowers strength. Specific surface area appears independent by materials composition; conversely pore volume slightly increases with the addition of dolomite refractory powder. During the thermodilatometric tests all compositions display a shrinkage of about 0.1% between 170 and 400 °C; however, sintering starts at higher temperature (above 600 °C) and samples melt in the range between 650 and 750 °C as a function of their composition, thus showing that the resulting materials loose refractoriness with respect to both the reference geopolymer and the dolomite refractory. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40831-021-00383-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5729-3244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-3823
ispartof Journal of sustainable metallurgy, 2021-09, Vol.7 (3), p.908-919
issn 2199-3823
2199-3831
language eng
recordid cdi_proquest_journals_2570438756
source Springer Nature
subjects Composition
Compressive strength
Dolomite
Earth and Environmental Science
End of life
Environment
Fractures
Geopolymers
Metakaolin
Metallic Materials
Research Article
Siliceous refractories
Sintering (powder metallurgy)
Sodium hydroxide
Sodium silicates
Sustainable Development
Thermal resistance
Workability
title Possible Recycling of End-of-Life Dolomite Refractories by the Production of Geopolymer-Based Composites: Experimental Investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20Recycling%20of%20End-of-Life%20Dolomite%20Refractories%20by%20the%20Production%20of%20Geopolymer-Based%20Composites:%20Experimental%20Investigation&rft.jtitle=Journal%20of%20sustainable%20metallurgy&rft.au=Furlani,%20E.&rft.date=2021-09-01&rft.volume=7&rft.issue=3&rft.spage=908&rft.epage=919&rft.pages=908-919&rft.issn=2199-3823&rft.eissn=2199-3831&rft_id=info:doi/10.1007/s40831-021-00383-x&rft_dat=%3Cproquest_cross%3E2570438756%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-65d16d1b29f6d366e0a0510da56f4b302accefcc650f4e285f5fa404674e55863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570438756&rft_id=info:pmid/&rfr_iscdi=true