Loading…

Stability of stationary solutions for the glioma growth equations with radial or axial symmetries

We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2021-10, Vol.44 (15), p.12021-12034
Main Authors: Polovinkina, Marina V., Debbouche, Amar, Polovinkin, Igor P., David, Sergio A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3
cites cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3
container_end_page 12034
container_issue 15
container_start_page 12021
container_title Mathematical methods in the applied sciences
container_volume 44
creator Polovinkina, Marina V.
Debbouche, Amar
Polovinkin, Igor P.
David, Sergio A.
description We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.
doi_str_mv 10.1002/mma.7194
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570607311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570607311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RMsceGSsus4r2NV8ZKoOABny0ns1lVSt7ajkn9PQrhy2hntp13NEHKLsEAA9tC2cpFhwc_IDKEoIuRZek5mgBlEnCG_JFfe7wAgR2QzIj-CLE1jQk-tpj7IYOxeup5623Sj9lRbR8NW0U1jbCvpxtlT2FJ17OS0P5nBOlkb2dABld-j8H3bquCM8tfkQsvGq5u_OSdfT4-fq5fo7f35dbV8iypWxDyqVcIkgs4Z42VdQp1zVJkuS51UKQKDgmEOvIpzSOIkqatCc0hqLdM4G2wdz8nddPfg7LFTPoid7dx-eClYkkEKWYw4UPcTVTnrvVNaHJxph8ACQYwFiqFAMRY4oNGEnkyj-n85sV4vf_kfU2tyhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570607311</pqid></control><display><type>article</type><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</creator><creatorcontrib>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</creatorcontrib><description>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7194</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>glioma cells ; Partial differential equations ; Stability ; stationary solutions ; symmetry ; time‐partial differential equations</subject><ispartof>Mathematical methods in the applied sciences, 2021-10, Vol.44 (15), p.12021-12034</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</citedby><cites>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</cites><orcidid>0000-0002-4365-7948 ; 0000-0002-4308-8909 ; 0000-0003-4321-9515 ; 0000-0002-7722-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Polovinkina, Marina V.</creatorcontrib><creatorcontrib>Debbouche, Amar</creatorcontrib><creatorcontrib>Polovinkin, Igor P.</creatorcontrib><creatorcontrib>David, Sergio A.</creatorcontrib><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><title>Mathematical methods in the applied sciences</title><description>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</description><subject>glioma cells</subject><subject>Partial differential equations</subject><subject>Stability</subject><subject>stationary solutions</subject><subject>symmetry</subject><subject>time‐partial differential equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RMsceGSsus4r2NV8ZKoOABny0ns1lVSt7ajkn9PQrhy2hntp13NEHKLsEAA9tC2cpFhwc_IDKEoIuRZek5mgBlEnCG_JFfe7wAgR2QzIj-CLE1jQk-tpj7IYOxeup5623Sj9lRbR8NW0U1jbCvpxtlT2FJ17OS0P5nBOlkb2dABld-j8H3bquCM8tfkQsvGq5u_OSdfT4-fq5fo7f35dbV8iypWxDyqVcIkgs4Z42VdQp1zVJkuS51UKQKDgmEOvIpzSOIkqatCc0hqLdM4G2wdz8nddPfg7LFTPoid7dx-eClYkkEKWYw4UPcTVTnrvVNaHJxph8ACQYwFiqFAMRY4oNGEnkyj-n85sV4vf_kfU2tyhQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Polovinkina, Marina V.</creator><creator>Debbouche, Amar</creator><creator>Polovinkin, Igor P.</creator><creator>David, Sergio A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4365-7948</orcidid><orcidid>https://orcid.org/0000-0002-4308-8909</orcidid><orcidid>https://orcid.org/0000-0003-4321-9515</orcidid><orcidid>https://orcid.org/0000-0002-7722-6927</orcidid></search><sort><creationdate>202110</creationdate><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><author>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>glioma cells</topic><topic>Partial differential equations</topic><topic>Stability</topic><topic>stationary solutions</topic><topic>symmetry</topic><topic>time‐partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polovinkina, Marina V.</creatorcontrib><creatorcontrib>Debbouche, Amar</creatorcontrib><creatorcontrib>Polovinkin, Igor P.</creatorcontrib><creatorcontrib>David, Sergio A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polovinkina, Marina V.</au><au>Debbouche, Amar</au><au>Polovinkin, Igor P.</au><au>David, Sergio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-10</date><risdate>2021</risdate><volume>44</volume><issue>15</issue><spage>12021</spage><epage>12034</epage><pages>12021-12034</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7194</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4365-7948</orcidid><orcidid>https://orcid.org/0000-0002-4308-8909</orcidid><orcidid>https://orcid.org/0000-0003-4321-9515</orcidid><orcidid>https://orcid.org/0000-0002-7722-6927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-10, Vol.44 (15), p.12021-12034
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2570607311
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects glioma cells
Partial differential equations
Stability
stationary solutions
symmetry
time‐partial differential equations
title Stability of stationary solutions for the glioma growth equations with radial or axial symmetries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20stationary%20solutions%20for%20the%20glioma%20growth%20equations%20with%20radial%20or%20axial%20symmetries&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Polovinkina,%20Marina%20V.&rft.date=2021-10&rft.volume=44&rft.issue=15&rft.spage=12021&rft.epage=12034&rft.pages=12021-12034&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7194&rft_dat=%3Cproquest_cross%3E2570607311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570607311&rft_id=info:pmid/&rfr_iscdi=true