Loading…
Stability of stationary solutions for the glioma growth equations with radial or axial symmetries
We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or a...
Saved in:
Published in: | Mathematical methods in the applied sciences 2021-10, Vol.44 (15), p.12021-12034 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3 |
container_end_page | 12034 |
container_issue | 15 |
container_start_page | 12021 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Polovinkina, Marina V. Debbouche, Amar Polovinkin, Igor P. David, Sergio A. |
description | We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states. |
doi_str_mv | 10.1002/mma.7194 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570607311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570607311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RMsceGSsus4r2NV8ZKoOABny0ns1lVSt7ajkn9PQrhy2hntp13NEHKLsEAA9tC2cpFhwc_IDKEoIuRZek5mgBlEnCG_JFfe7wAgR2QzIj-CLE1jQk-tpj7IYOxeup5623Sj9lRbR8NW0U1jbCvpxtlT2FJ17OS0P5nBOlkb2dABld-j8H3bquCM8tfkQsvGq5u_OSdfT4-fq5fo7f35dbV8iypWxDyqVcIkgs4Z42VdQp1zVJkuS51UKQKDgmEOvIpzSOIkqatCc0hqLdM4G2wdz8nddPfg7LFTPoid7dx-eClYkkEKWYw4UPcTVTnrvVNaHJxph8ACQYwFiqFAMRY4oNGEnkyj-n85sV4vf_kfU2tyhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570607311</pqid></control><display><type>article</type><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</creator><creatorcontrib>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</creatorcontrib><description>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7194</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>glioma cells ; Partial differential equations ; Stability ; stationary solutions ; symmetry ; time‐partial differential equations</subject><ispartof>Mathematical methods in the applied sciences, 2021-10, Vol.44 (15), p.12021-12034</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</citedby><cites>FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</cites><orcidid>0000-0002-4365-7948 ; 0000-0002-4308-8909 ; 0000-0003-4321-9515 ; 0000-0002-7722-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Polovinkina, Marina V.</creatorcontrib><creatorcontrib>Debbouche, Amar</creatorcontrib><creatorcontrib>Polovinkin, Igor P.</creatorcontrib><creatorcontrib>David, Sergio A.</creatorcontrib><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><title>Mathematical methods in the applied sciences</title><description>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</description><subject>glioma cells</subject><subject>Partial differential equations</subject><subject>Stability</subject><subject>stationary solutions</subject><subject>symmetry</subject><subject>time‐partial differential equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RMsceGSsus4r2NV8ZKoOABny0ns1lVSt7ajkn9PQrhy2hntp13NEHKLsEAA9tC2cpFhwc_IDKEoIuRZek5mgBlEnCG_JFfe7wAgR2QzIj-CLE1jQk-tpj7IYOxeup5623Sj9lRbR8NW0U1jbCvpxtlT2FJ17OS0P5nBOlkb2dABld-j8H3bquCM8tfkQsvGq5u_OSdfT4-fq5fo7f35dbV8iypWxDyqVcIkgs4Z42VdQp1zVJkuS51UKQKDgmEOvIpzSOIkqatCc0hqLdM4G2wdz8nddPfg7LFTPoid7dx-eClYkkEKWYw4UPcTVTnrvVNaHJxph8ACQYwFiqFAMRY4oNGEnkyj-n85sV4vf_kfU2tyhQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Polovinkina, Marina V.</creator><creator>Debbouche, Amar</creator><creator>Polovinkin, Igor P.</creator><creator>David, Sergio A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4365-7948</orcidid><orcidid>https://orcid.org/0000-0002-4308-8909</orcidid><orcidid>https://orcid.org/0000-0003-4321-9515</orcidid><orcidid>https://orcid.org/0000-0002-7722-6927</orcidid></search><sort><creationdate>202110</creationdate><title>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</title><author>Polovinkina, Marina V. ; Debbouche, Amar ; Polovinkin, Igor P. ; David, Sergio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>glioma cells</topic><topic>Partial differential equations</topic><topic>Stability</topic><topic>stationary solutions</topic><topic>symmetry</topic><topic>time‐partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polovinkina, Marina V.</creatorcontrib><creatorcontrib>Debbouche, Amar</creatorcontrib><creatorcontrib>Polovinkin, Igor P.</creatorcontrib><creatorcontrib>David, Sergio A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polovinkina, Marina V.</au><au>Debbouche, Amar</au><au>Polovinkin, Igor P.</au><au>David, Sergio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of stationary solutions for the glioma growth equations with radial or axial symmetries</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-10</date><risdate>2021</risdate><volume>44</volume><issue>15</issue><spage>12021</spage><epage>12034</epage><pages>12021-12034</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We investigate a class of nonlinear time‐partial differential equations describing the growth of glioma cells. The main results show sufficient conditions for the stability of stationary solutions for these kind of equations. More precisely, we study different spatial variables involving radial or axial symmetries. In addition, we also numerically simulate the system based on three distinct scenarios by considering symmetry across all spatial variables. The numerical results confirm the presence of possible stable states.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7194</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4365-7948</orcidid><orcidid>https://orcid.org/0000-0002-4308-8909</orcidid><orcidid>https://orcid.org/0000-0003-4321-9515</orcidid><orcidid>https://orcid.org/0000-0002-7722-6927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-10, Vol.44 (15), p.12021-12034 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2570607311 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | glioma cells Partial differential equations Stability stationary solutions symmetry time‐partial differential equations |
title | Stability of stationary solutions for the glioma growth equations with radial or axial symmetries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20stationary%20solutions%20for%20the%20glioma%20growth%20equations%20with%20radial%20or%20axial%20symmetries&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Polovinkina,%20Marina%20V.&rft.date=2021-10&rft.volume=44&rft.issue=15&rft.spage=12021&rft.epage=12034&rft.pages=12021-12034&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7194&rft_dat=%3Cproquest_cross%3E2570607311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-de52a10f8224bdb0d841e7fbbf5c61020921804c3805355dc9f405dfa63755dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570607311&rft_id=info:pmid/&rfr_iscdi=true |