Loading…

Full-ISL clock offset estimation and prediction algorithm for BDS3

The Ka-band dual one-way measurements from Inter-Satellite Link (ISL) devices equipped on the third-generation Beidou Navigation Satellite System (BDS3) follow a time division multiple access (TDMA) structure and can calculate inter-satellite and satellite-ground clock offsets. L-band two-way satell...

Full description

Saved in:
Bibliographic Details
Published in:GPS solutions 2021-10, Vol.25 (4), Article 140
Main Authors: Pan, Junyang, Hu, Xiaogong, Zhou, Shanshi, Tang, Chengpan, Wang, Dongxia, Yang, Yufei, Dong, Wenli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23
cites cdi_FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23
container_end_page
container_issue 4
container_start_page
container_title GPS solutions
container_volume 25
creator Pan, Junyang
Hu, Xiaogong
Zhou, Shanshi
Tang, Chengpan
Wang, Dongxia
Yang, Yufei
Dong, Wenli
description The Ka-band dual one-way measurements from Inter-Satellite Link (ISL) devices equipped on the third-generation Beidou Navigation Satellite System (BDS3) follow a time division multiple access (TDMA) structure and can calculate inter-satellite and satellite-ground clock offsets. L-band two-way satellite time and frequency transfer (TWSTFT) is also applied for time synchronization between satellites and ground master. We focus on a full-ISL clock offset estimation and prediction algorithm that estimates all satellite clock parameters simultaneously utilizing ISL clock observations and also synchronizes the constellation to the system time in Beidou Time (BDT) using Ka-band satellite-ground clock observations. We discuss the applications of this algorithm by assessing the clock performance of all BDS3 satellites equipped with a passive hydrogen maser (PHM) or rubidium atomic clock. After investigating the proper prediction model for each satellite, we use the full-ISL algorithm for 24-h clock predictions. The constant hardware delays in the ISL measurements are calibrated by comparing the derived clock parameters with TWSTFT measurements; the full-ISL clock products show high accuracy and continuity. The BDS3 PHMs and rubidium clocks both have a small clock rate drift of 10 –20  s/s 2 . The frequency stability of the BDS3 PHMs and some rubidium clocks is approximately 6–9 × 10 –15 at 1-day intervals. A linear model is suitable for these small-drift clocks, while a quadratic model is essential for the other rubidium clocks. Applying the full-ISL clock prediction method improves the RMS of the 24 h prediction error from 0.88 to 0.75 ns for PHMs and from 2.62 to 1.64 ns for rubidium clocks. The estimated ISL hardware delay STDs are less than 0.2 ns, and the prediction errors evaluated with TWSTFT clock observations are similar to those evaluated with Ka-band clock observations.
doi_str_mv 10.1007/s10291-021-01177-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570669402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570669402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bB-JI6PtFCoVIlD4Wy5jl1S0rjY6YG_r9sgceOw2h1pZnZ3ELqlcE8B5EOiwBQlwHJRKiWBMzSiRYa0qsrzPEMFpOASLtFVShsABkqJEZrM9m1L5ssFtm2wXzh4n1yPXeqbremb0GHT1XgXXd3YAbbrEJv-c4t9iHjytOTX6MKbNrmb3z5GH7Pn9-krWby9zKePC2KZUD2RlfNlWXMloSzVSllecFZLa5jkpVOiqtWKejDOCsGlEtI4w4Rn3q-oLTzjY3Q3-O5i-N7nC_Um7GOXV2pWnEwFHFlsYNkYUorO613Mr8QfTUEfs9JDVjpnpU9ZacgiPohSJndrF_-s_1EdAMqLass</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570669402</pqid></control><display><type>article</type><title>Full-ISL clock offset estimation and prediction algorithm for BDS3</title><source>Springer Nature</source><creator>Pan, Junyang ; Hu, Xiaogong ; Zhou, Shanshi ; Tang, Chengpan ; Wang, Dongxia ; Yang, Yufei ; Dong, Wenli</creator><creatorcontrib>Pan, Junyang ; Hu, Xiaogong ; Zhou, Shanshi ; Tang, Chengpan ; Wang, Dongxia ; Yang, Yufei ; Dong, Wenli</creatorcontrib><description>The Ka-band dual one-way measurements from Inter-Satellite Link (ISL) devices equipped on the third-generation Beidou Navigation Satellite System (BDS3) follow a time division multiple access (TDMA) structure and can calculate inter-satellite and satellite-ground clock offsets. L-band two-way satellite time and frequency transfer (TWSTFT) is also applied for time synchronization between satellites and ground master. We focus on a full-ISL clock offset estimation and prediction algorithm that estimates all satellite clock parameters simultaneously utilizing ISL clock observations and also synchronizes the constellation to the system time in Beidou Time (BDT) using Ka-band satellite-ground clock observations. We discuss the applications of this algorithm by assessing the clock performance of all BDS3 satellites equipped with a passive hydrogen maser (PHM) or rubidium atomic clock. After investigating the proper prediction model for each satellite, we use the full-ISL algorithm for 24-h clock predictions. The constant hardware delays in the ISL measurements are calibrated by comparing the derived clock parameters with TWSTFT measurements; the full-ISL clock products show high accuracy and continuity. The BDS3 PHMs and rubidium clocks both have a small clock rate drift of 10 –20  s/s 2 . The frequency stability of the BDS3 PHMs and some rubidium clocks is approximately 6–9 × 10 –15 at 1-day intervals. A linear model is suitable for these small-drift clocks, while a quadratic model is essential for the other rubidium clocks. Applying the full-ISL clock prediction method improves the RMS of the 24 h prediction error from 0.88 to 0.75 ns for PHMs and from 2.62 to 1.64 ns for rubidium clocks. The estimated ISL hardware delay STDs are less than 0.2 ns, and the prediction errors evaluated with TWSTFT clock observations are similar to those evaluated with Ka-band clock observations.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-021-01177-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Atmospheric Sciences ; Atomic clocks ; Automotive Engineering ; BeiDou Navigation Satellite System ; benefits ; Clocks &amp; watches ; Drift ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Extremely high frequencies ; Frequency stability ; Geophysics/Geodesy ; Hardware ; Hydrogen masers ; Intersatellite communications ; Mathematical models ; Navigation satellites ; Original Article ; Parameter estimation ; practice ; Prediction models ; promise ; Rubidium ; Satellite communications ; Satellite constellations ; Satellite navigation systems ; Satellite observation ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Time Division Multiple Access ; Time synchronization ; Timekeeping in space: technology</subject><ispartof>GPS solutions, 2021-10, Vol.25 (4), Article 140</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23</citedby><cites>FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23</cites><orcidid>0000-0001-9459-1996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pan, Junyang</creatorcontrib><creatorcontrib>Hu, Xiaogong</creatorcontrib><creatorcontrib>Zhou, Shanshi</creatorcontrib><creatorcontrib>Tang, Chengpan</creatorcontrib><creatorcontrib>Wang, Dongxia</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Dong, Wenli</creatorcontrib><title>Full-ISL clock offset estimation and prediction algorithm for BDS3</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>The Ka-band dual one-way measurements from Inter-Satellite Link (ISL) devices equipped on the third-generation Beidou Navigation Satellite System (BDS3) follow a time division multiple access (TDMA) structure and can calculate inter-satellite and satellite-ground clock offsets. L-band two-way satellite time and frequency transfer (TWSTFT) is also applied for time synchronization between satellites and ground master. We focus on a full-ISL clock offset estimation and prediction algorithm that estimates all satellite clock parameters simultaneously utilizing ISL clock observations and also synchronizes the constellation to the system time in Beidou Time (BDT) using Ka-band satellite-ground clock observations. We discuss the applications of this algorithm by assessing the clock performance of all BDS3 satellites equipped with a passive hydrogen maser (PHM) or rubidium atomic clock. After investigating the proper prediction model for each satellite, we use the full-ISL algorithm for 24-h clock predictions. The constant hardware delays in the ISL measurements are calibrated by comparing the derived clock parameters with TWSTFT measurements; the full-ISL clock products show high accuracy and continuity. The BDS3 PHMs and rubidium clocks both have a small clock rate drift of 10 –20  s/s 2 . The frequency stability of the BDS3 PHMs and some rubidium clocks is approximately 6–9 × 10 –15 at 1-day intervals. A linear model is suitable for these small-drift clocks, while a quadratic model is essential for the other rubidium clocks. Applying the full-ISL clock prediction method improves the RMS of the 24 h prediction error from 0.88 to 0.75 ns for PHMs and from 2.62 to 1.64 ns for rubidium clocks. The estimated ISL hardware delay STDs are less than 0.2 ns, and the prediction errors evaluated with TWSTFT clock observations are similar to those evaluated with Ka-band clock observations.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Atomic clocks</subject><subject>Automotive Engineering</subject><subject>BeiDou Navigation Satellite System</subject><subject>benefits</subject><subject>Clocks &amp; watches</subject><subject>Drift</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Extremely high frequencies</subject><subject>Frequency stability</subject><subject>Geophysics/Geodesy</subject><subject>Hardware</subject><subject>Hydrogen masers</subject><subject>Intersatellite communications</subject><subject>Mathematical models</subject><subject>Navigation satellites</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>practice</subject><subject>Prediction models</subject><subject>promise</subject><subject>Rubidium</subject><subject>Satellite communications</subject><subject>Satellite constellations</subject><subject>Satellite navigation systems</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Time Division Multiple Access</subject><subject>Time synchronization</subject><subject>Timekeeping in space: technology</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bB-JI6PtFCoVIlD4Wy5jl1S0rjY6YG_r9sgceOw2h1pZnZ3ELqlcE8B5EOiwBQlwHJRKiWBMzSiRYa0qsrzPEMFpOASLtFVShsABkqJEZrM9m1L5ssFtm2wXzh4n1yPXeqbremb0GHT1XgXXd3YAbbrEJv-c4t9iHjytOTX6MKbNrmb3z5GH7Pn9-krWby9zKePC2KZUD2RlfNlWXMloSzVSllecFZLa5jkpVOiqtWKejDOCsGlEtI4w4Rn3q-oLTzjY3Q3-O5i-N7nC_Um7GOXV2pWnEwFHFlsYNkYUorO613Mr8QfTUEfs9JDVjpnpU9ZacgiPohSJndrF_-s_1EdAMqLass</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Pan, Junyang</creator><creator>Hu, Xiaogong</creator><creator>Zhou, Shanshi</creator><creator>Tang, Chengpan</creator><creator>Wang, Dongxia</creator><creator>Yang, Yufei</creator><creator>Dong, Wenli</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9459-1996</orcidid></search><sort><creationdate>20211001</creationdate><title>Full-ISL clock offset estimation and prediction algorithm for BDS3</title><author>Pan, Junyang ; Hu, Xiaogong ; Zhou, Shanshi ; Tang, Chengpan ; Wang, Dongxia ; Yang, Yufei ; Dong, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Atomic clocks</topic><topic>Automotive Engineering</topic><topic>BeiDou Navigation Satellite System</topic><topic>benefits</topic><topic>Clocks &amp; watches</topic><topic>Drift</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Extremely high frequencies</topic><topic>Frequency stability</topic><topic>Geophysics/Geodesy</topic><topic>Hardware</topic><topic>Hydrogen masers</topic><topic>Intersatellite communications</topic><topic>Mathematical models</topic><topic>Navigation satellites</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>practice</topic><topic>Prediction models</topic><topic>promise</topic><topic>Rubidium</topic><topic>Satellite communications</topic><topic>Satellite constellations</topic><topic>Satellite navigation systems</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Time Division Multiple Access</topic><topic>Time synchronization</topic><topic>Timekeeping in space: technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Junyang</creatorcontrib><creatorcontrib>Hu, Xiaogong</creatorcontrib><creatorcontrib>Zhou, Shanshi</creatorcontrib><creatorcontrib>Tang, Chengpan</creatorcontrib><creatorcontrib>Wang, Dongxia</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><creatorcontrib>Dong, Wenli</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Junyang</au><au>Hu, Xiaogong</au><au>Zhou, Shanshi</au><au>Tang, Chengpan</au><au>Wang, Dongxia</au><au>Yang, Yufei</au><au>Dong, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-ISL clock offset estimation and prediction algorithm for BDS3</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>4</issue><artnum>140</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>The Ka-band dual one-way measurements from Inter-Satellite Link (ISL) devices equipped on the third-generation Beidou Navigation Satellite System (BDS3) follow a time division multiple access (TDMA) structure and can calculate inter-satellite and satellite-ground clock offsets. L-band two-way satellite time and frequency transfer (TWSTFT) is also applied for time synchronization between satellites and ground master. We focus on a full-ISL clock offset estimation and prediction algorithm that estimates all satellite clock parameters simultaneously utilizing ISL clock observations and also synchronizes the constellation to the system time in Beidou Time (BDT) using Ka-band satellite-ground clock observations. We discuss the applications of this algorithm by assessing the clock performance of all BDS3 satellites equipped with a passive hydrogen maser (PHM) or rubidium atomic clock. After investigating the proper prediction model for each satellite, we use the full-ISL algorithm for 24-h clock predictions. The constant hardware delays in the ISL measurements are calibrated by comparing the derived clock parameters with TWSTFT measurements; the full-ISL clock products show high accuracy and continuity. The BDS3 PHMs and rubidium clocks both have a small clock rate drift of 10 –20  s/s 2 . The frequency stability of the BDS3 PHMs and some rubidium clocks is approximately 6–9 × 10 –15 at 1-day intervals. A linear model is suitable for these small-drift clocks, while a quadratic model is essential for the other rubidium clocks. Applying the full-ISL clock prediction method improves the RMS of the 24 h prediction error from 0.88 to 0.75 ns for PHMs and from 2.62 to 1.64 ns for rubidium clocks. The estimated ISL hardware delay STDs are less than 0.2 ns, and the prediction errors evaluated with TWSTFT clock observations are similar to those evaluated with Ka-band clock observations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-021-01177-0</doi><orcidid>https://orcid.org/0000-0001-9459-1996</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2021-10, Vol.25 (4), Article 140
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2570669402
source Springer Nature
subjects Algorithms
Atmospheric Sciences
Atomic clocks
Automotive Engineering
BeiDou Navigation Satellite System
benefits
Clocks & watches
Drift
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Extremely high frequencies
Frequency stability
Geophysics/Geodesy
Hardware
Hydrogen masers
Intersatellite communications
Mathematical models
Navigation satellites
Original Article
Parameter estimation
practice
Prediction models
promise
Rubidium
Satellite communications
Satellite constellations
Satellite navigation systems
Satellite observation
Satellites
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Time Division Multiple Access
Time synchronization
Timekeeping in space: technology
title Full-ISL clock offset estimation and prediction algorithm for BDS3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-ISL%20clock%20offset%20estimation%20and%20prediction%20algorithm%20for%20BDS3&rft.jtitle=GPS%20solutions&rft.au=Pan,%20Junyang&rft.date=2021-10-01&rft.volume=25&rft.issue=4&rft.artnum=140&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-021-01177-0&rft_dat=%3Cproquest_cross%3E2570669402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-78ef66d3970669b9c3532d7ca2736e948d9b1f0aec4437947aea24f2ffb1c5f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570669402&rft_id=info:pmid/&rfr_iscdi=true