Loading…
Neural network approaches based on new NCP-functions for solving tensor complementarity problem
Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed n...
Saved in:
Published in: | Journal of applied mathematics & computing 2021, Vol.67 (1-2), p.833-853 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993 |
container_end_page | 853 |
container_issue | 1-2 |
container_start_page | 833 |
container_title | Journal of applied mathematics & computing |
container_volume | 67 |
creator | Xie, Ya-Jun Ke, Yi-Fen |
description | Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions. |
doi_str_mv | 10.1007/s12190-021-01509-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571081139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571081139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2cRIfUcVLqoADnC0n2ZSU1A52QtS_x6VI3Djtzu48pCHknMMlB8ivIhdcAwPBGXAFmk0HZMaLTDEBhTpMu9IFU-lwTE5iXANkuQY9I-YJx2A76nCYfPigtu-Dt9U7RlraiDX1Lv0m-rR4Yc3oqqH1LtLGBxp999W6FR3QxQQrv-k73KAbbGiHLU02ZcKn5KixXcSz3zknb3e3r4sHtny-f1zcLFkluR6YqLHKQKEtasiFVrbk2jZZ3oiqxLy2giPPpVBC1yi5lCKTdQalEKK011JrOScXe9-U-zliHMzaj8GlSCNUzqHgXO5YYs-qgo8xYGP60G5s2BoOZlek2RdpUpHmp0gzJZHci2IiuxWGP-t_VN9PXHe2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571081139</pqid></control><display><type>article</type><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><source>Springer Nature</source><creator>Xie, Ya-Jun ; Ke, Yi-Fen</creator><creatorcontrib>Xie, Ya-Jun ; Ke, Yi-Fen</creatorcontrib><description>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-021-01509-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neural networks ; Original Research ; Stability ; Tensors ; Theory of Computation</subject><ispartof>Journal of applied mathematics & computing, 2021, Vol.67 (1-2), p.833-853</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</citedby><cites>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Ya-Jun</creatorcontrib><creatorcontrib>Ke, Yi-Fen</creatorcontrib><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</description><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Stability</subject><subject>Tensors</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2cRIfUcVLqoADnC0n2ZSU1A52QtS_x6VI3Djtzu48pCHknMMlB8ivIhdcAwPBGXAFmk0HZMaLTDEBhTpMu9IFU-lwTE5iXANkuQY9I-YJx2A76nCYfPigtu-Dt9U7RlraiDX1Lv0m-rR4Yc3oqqH1LtLGBxp999W6FR3QxQQrv-k73KAbbGiHLU02ZcKn5KixXcSz3zknb3e3r4sHtny-f1zcLFkluR6YqLHKQKEtasiFVrbk2jZZ3oiqxLy2giPPpVBC1yi5lCKTdQalEKK011JrOScXe9-U-zliHMzaj8GlSCNUzqHgXO5YYs-qgo8xYGP60G5s2BoOZlek2RdpUpHmp0gzJZHci2IiuxWGP-t_VN9PXHe2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xie, Ya-Jun</creator><creator>Ke, Yi-Fen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2021</creationdate><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><author>Xie, Ya-Jun ; Ke, Yi-Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Stability</topic><topic>Tensors</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Ya-Jun</creatorcontrib><creatorcontrib>Ke, Yi-Fen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Ya-Jun</au><au>Ke, Yi-Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021</date><risdate>2021</risdate><volume>67</volume><issue>1-2</issue><spage>833</spage><epage>853</epage><pages>833-853</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-021-01509-w</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2021, Vol.67 (1-2), p.833-853 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2571081139 |
source | Springer Nature |
subjects | Applied mathematics Computational Mathematics and Numerical Analysis Mathematical analysis Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Neural networks Original Research Stability Tensors Theory of Computation |
title | Neural network approaches based on new NCP-functions for solving tensor complementarity problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20approaches%20based%20on%20new%20NCP-functions%20for%20solving%20tensor%20complementarity%20problem&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Xie,%20Ya-Jun&rft.date=2021&rft.volume=67&rft.issue=1-2&rft.spage=833&rft.epage=853&rft.pages=833-853&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-021-01509-w&rft_dat=%3Cproquest_cross%3E2571081139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571081139&rft_id=info:pmid/&rfr_iscdi=true |