Loading…

Neural network approaches based on new NCP-functions for solving tensor complementarity problem

Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics & computing 2021, Vol.67 (1-2), p.833-853
Main Authors: Xie, Ya-Jun, Ke, Yi-Fen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993
cites cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993
container_end_page 853
container_issue 1-2
container_start_page 833
container_title Journal of applied mathematics & computing
container_volume 67
creator Xie, Ya-Jun
Ke, Yi-Fen
description Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.
doi_str_mv 10.1007/s12190-021-01509-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571081139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571081139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2cRIfUcVLqoADnC0n2ZSU1A52QtS_x6VI3Djtzu48pCHknMMlB8ivIhdcAwPBGXAFmk0HZMaLTDEBhTpMu9IFU-lwTE5iXANkuQY9I-YJx2A76nCYfPigtu-Dt9U7RlraiDX1Lv0m-rR4Yc3oqqH1LtLGBxp999W6FR3QxQQrv-k73KAbbGiHLU02ZcKn5KixXcSz3zknb3e3r4sHtny-f1zcLFkluR6YqLHKQKEtasiFVrbk2jZZ3oiqxLy2giPPpVBC1yi5lCKTdQalEKK011JrOScXe9-U-zliHMzaj8GlSCNUzqHgXO5YYs-qgo8xYGP60G5s2BoOZlek2RdpUpHmp0gzJZHci2IiuxWGP-t_VN9PXHe2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571081139</pqid></control><display><type>article</type><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><source>Springer Nature</source><creator>Xie, Ya-Jun ; Ke, Yi-Fen</creator><creatorcontrib>Xie, Ya-Jun ; Ke, Yi-Fen</creatorcontrib><description>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-021-01509-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neural networks ; Original Research ; Stability ; Tensors ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2021, Vol.67 (1-2), p.833-853</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</citedby><cites>FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Ya-Jun</creatorcontrib><creatorcontrib>Ke, Yi-Fen</creatorcontrib><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</description><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Stability</subject><subject>Tensors</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2cRIfUcVLqoADnC0n2ZSU1A52QtS_x6VI3Djtzu48pCHknMMlB8ivIhdcAwPBGXAFmk0HZMaLTDEBhTpMu9IFU-lwTE5iXANkuQY9I-YJx2A76nCYfPigtu-Dt9U7RlraiDX1Lv0m-rR4Yc3oqqH1LtLGBxp999W6FR3QxQQrv-k73KAbbGiHLU02ZcKn5KixXcSz3zknb3e3r4sHtny-f1zcLFkluR6YqLHKQKEtasiFVrbk2jZZ3oiqxLy2giPPpVBC1yi5lCKTdQalEKK011JrOScXe9-U-zliHMzaj8GlSCNUzqHgXO5YYs-qgo8xYGP60G5s2BoOZlek2RdpUpHmp0gzJZHci2IiuxWGP-t_VN9PXHe2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xie, Ya-Jun</creator><creator>Ke, Yi-Fen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2021</creationdate><title>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</title><author>Xie, Ya-Jun ; Ke, Yi-Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Stability</topic><topic>Tensors</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Ya-Jun</creatorcontrib><creatorcontrib>Ke, Yi-Fen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Ya-Jun</au><au>Ke, Yi-Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network approaches based on new NCP-functions for solving tensor complementarity problem</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021</date><risdate>2021</risdate><volume>67</volume><issue>1-2</issue><spage>833</spage><epage>853</epage><pages>833-853</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-021-01509-w</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2021, Vol.67 (1-2), p.833-853
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2571081139
source Springer Nature
subjects Applied mathematics
Computational Mathematics and Numerical Analysis
Mathematical analysis
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Neural networks
Original Research
Stability
Tensors
Theory of Computation
title Neural network approaches based on new NCP-functions for solving tensor complementarity problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20approaches%20based%20on%20new%20NCP-functions%20for%20solving%20tensor%20complementarity%20problem&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Xie,%20Ya-Jun&rft.date=2021&rft.volume=67&rft.issue=1-2&rft.spage=833&rft.epage=853&rft.pages=833-853&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-021-01509-w&rft_dat=%3Cproquest_cross%3E2571081139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-2dec605ea8d07295ab19af67f2cbe7da21e1732529de3133263d60b222ba43993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571081139&rft_id=info:pmid/&rfr_iscdi=true