Loading…

Exponential bases for partitions of intervals

For a partition of \([0,1]\) into intervals \(I_1,\ldots,I_n\) we prove the existence of a partition of \(\mathbb{Z}\) into \(\Lambda_1,\ldots, \Lambda_n\) such that the complex exponential functions with frequencies in \( \Lambda_k\) form a Riesz basis for \(L^2(I_k)\), and furthermore, that for an...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-09
Main Authors: Pfander, Goetz, Revay, Shauna, Walnut, David
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pfander, Goetz
Revay, Shauna
Walnut, David
description For a partition of \([0,1]\) into intervals \(I_1,\ldots,I_n\) we prove the existence of a partition of \(\mathbb{Z}\) into \(\Lambda_1,\ldots, \Lambda_n\) such that the complex exponential functions with frequencies in \( \Lambda_k\) form a Riesz basis for \(L^2(I_k)\), and furthermore, that for any \(J\subseteq\{1,\,2,\,\dots,\,n\}\), the exponential functions with frequencies in \( \bigcup_{j\in J}\Lambda_j\) form a Riesz basis for \(L^2(I)\) for any interval \(I\) with length \(|I|=\sum_{j\in J}|I_j|\). The construction extends to infinite partitions of \([0,1]\), but with size limitations on the subsets \(J\subseteq \mathbb{Z}\); it combines the ergodic properties of subsequences of \(\mathbb{Z}\) known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2571346665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571346665</sourcerecordid><originalsourceid>FETCH-proquest_journals_25713466653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQda0oyM9LzSvJTMxRSEosTi1WSMsvUihILCrJLMnMzytWyE9TyMwrSS0qS8wp5mFgTQNSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpuaGxiZmZmakycKgD3PjKC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571346665</pqid></control><display><type>article</type><title>Exponential bases for partitions of intervals</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pfander, Goetz ; Revay, Shauna ; Walnut, David</creator><creatorcontrib>Pfander, Goetz ; Revay, Shauna ; Walnut, David</creatorcontrib><description>For a partition of \([0,1]\) into intervals \(I_1,\ldots,I_n\) we prove the existence of a partition of \(\mathbb{Z}\) into \(\Lambda_1,\ldots, \Lambda_n\) such that the complex exponential functions with frequencies in \( \Lambda_k\) form a Riesz basis for \(L^2(I_k)\), and furthermore, that for any \(J\subseteq\{1,\,2,\,\dots,\,n\}\), the exponential functions with frequencies in \( \bigcup_{j\in J}\Lambda_j\) form a Riesz basis for \(L^2(I)\) for any interval \(I\) with length \(|I|=\sum_{j\in J}|I_j|\). The construction extends to infinite partitions of \([0,1]\), but with size limitations on the subsets \(J\subseteq \mathbb{Z}\); it combines the ergodic properties of subsequences of \(\mathbb{Z}\) known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Exponential functions ; Intervals</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2571346665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pfander, Goetz</creatorcontrib><creatorcontrib>Revay, Shauna</creatorcontrib><creatorcontrib>Walnut, David</creatorcontrib><title>Exponential bases for partitions of intervals</title><title>arXiv.org</title><description>For a partition of \([0,1]\) into intervals \(I_1,\ldots,I_n\) we prove the existence of a partition of \(\mathbb{Z}\) into \(\Lambda_1,\ldots, \Lambda_n\) such that the complex exponential functions with frequencies in \( \Lambda_k\) form a Riesz basis for \(L^2(I_k)\), and furthermore, that for any \(J\subseteq\{1,\,2,\,\dots,\,n\}\), the exponential functions with frequencies in \( \bigcup_{j\in J}\Lambda_j\) form a Riesz basis for \(L^2(I)\) for any interval \(I\) with length \(|I|=\sum_{j\in J}|I_j|\). The construction extends to infinite partitions of \([0,1]\), but with size limitations on the subsets \(J\subseteq \mathbb{Z}\); it combines the ergodic properties of subsequences of \(\mathbb{Z}\) known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</description><subject>Exponential functions</subject><subject>Intervals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQda0oyM9LzSvJTMxRSEosTi1WSMsvUihILCrJLMnMzytWyE9TyMwrSS0qS8wp5mFgTQNSqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpuaGxiZmZmakycKgD3PjKC</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Pfander, Goetz</creator><creator>Revay, Shauna</creator><creator>Walnut, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210909</creationdate><title>Exponential bases for partitions of intervals</title><author>Pfander, Goetz ; Revay, Shauna ; Walnut, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25713466653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Exponential functions</topic><topic>Intervals</topic><toplevel>online_resources</toplevel><creatorcontrib>Pfander, Goetz</creatorcontrib><creatorcontrib>Revay, Shauna</creatorcontrib><creatorcontrib>Walnut, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfander, Goetz</au><au>Revay, Shauna</au><au>Walnut, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exponential bases for partitions of intervals</atitle><jtitle>arXiv.org</jtitle><date>2021-09-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>For a partition of \([0,1]\) into intervals \(I_1,\ldots,I_n\) we prove the existence of a partition of \(\mathbb{Z}\) into \(\Lambda_1,\ldots, \Lambda_n\) such that the complex exponential functions with frequencies in \( \Lambda_k\) form a Riesz basis for \(L^2(I_k)\), and furthermore, that for any \(J\subseteq\{1,\,2,\,\dots,\,n\}\), the exponential functions with frequencies in \( \bigcup_{j\in J}\Lambda_j\) form a Riesz basis for \(L^2(I)\) for any interval \(I\) with length \(|I|=\sum_{j\in J}|I_j|\). The construction extends to infinite partitions of \([0,1]\), but with size limitations on the subsets \(J\subseteq \mathbb{Z}\); it combines the ergodic properties of subsequences of \(\mathbb{Z}\) known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2571346665
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Exponential functions
Intervals
title Exponential bases for partitions of intervals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exponential%20bases%20for%20partitions%20of%20intervals&rft.jtitle=arXiv.org&rft.au=Pfander,%20Goetz&rft.date=2021-09-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2571346665%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25713466653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571346665&rft_id=info:pmid/&rfr_iscdi=true