Loading…
SVM-based Partial Discharge Pattern Classification for GIS
Partial discharges (PD) occur when there are localized dielectric breakdowns in small regions of gas insulated substations (GIS). It is of high importance to recognize the PD patterns, through which we can diagnose the defects caused by different sources so that predictive maintenance can be conduct...
Saved in:
Published in: | Journal of physics. Conference series 2018-01, Vol.960 (1), p.12051 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Partial discharges (PD) occur when there are localized dielectric breakdowns in small regions of gas insulated substations (GIS). It is of high importance to recognize the PD patterns, through which we can diagnose the defects caused by different sources so that predictive maintenance can be conducted to prevent from unplanned power outage. In this paper, we propose an approach to perform partial discharge pattern classification. It first recovers the PRPD matrices from the PRPD2D images; then statistical features are extracted from the recovered PRPD matrix and fed into SVM for classification. Experiments conducted on a dataset containing thousands of images demonstrates the high effectiveness of the method. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/960/1/012051 |