Loading…

Improved properties of PTFE composites filled with glass fiber modified by sol–gel method

PTFE/GF(glass fiber) composites are widely applied in high-frequency printed circuit board (PCB) substrate materials due to the excellent dielectric properties of PTFE and the low thermal expansion coefficient of GF. However, the poor interface compatibility between PTFE and GF affects the performan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-09, Vol.32 (18), p.23090-23102
Main Authors: Li, Qiuying, Liu, Pengying, Mahmood, Kashif, Zhang, Ning, Che, Yanchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PTFE/GF(glass fiber) composites are widely applied in high-frequency printed circuit board (PCB) substrate materials due to the excellent dielectric properties of PTFE and the low thermal expansion coefficient of GF. However, the poor interface compatibility between PTFE and GF affects the performance of the composite substrates. In this study, tetraethyl orthosilicate (TEOS) was used as the silicon source, and polydimethylsiloxane (PDMS) was the organic precursor to modify the surface of GF through the sol–gel method to promote the interface compatibility of GF and PTFE. The modified GF noted T-GF was filled in PTFE to prepare PTFE/T-GF composites. SEM, FTIR, XPS, and contact angle confirmed that organic–inorganic hybrids were successfully loaded on GF's surface. Moreover, compared with PTFE/GF and the conventional coupling agent modified GF filled PTFE composites, the PTFE/T-GF exhibited improved dielectric constant (2.305), decreased dielectric loss (9.08E −4 ), higher bending strength (21.45 MPa) and bending modulus (522 MPa), better thermal conductivity (0.268 W/m*K) and lower CTE (70 ppm/°C), making it has promising application as the substrate materials for high frequency PCB.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-021-06792-8