Loading…

Sampling Based Influence Maximization on Linear Threshold Model

A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the activ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2018-04, Vol.989 (1), p.12013
Main Authors: Jia, Su, Chen, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3
container_end_page
container_issue 1
container_start_page 12013
container_title Journal of physics. Conference series
container_volume 989
creator Jia, Su
Chen, Ling
description A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.
doi_str_mv 10.1088/1742-6596/989/1/012013
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572115140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572115140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</originalsourceid><addsrcrecordid>eNqFkG1LwzAQgIMoOKd_QQp-8kNtLmna9JPo8GWyobD5OWR5cRldU5MN1F9vR0URBI-DO7jn7uBB6BTwBWDOMyhzkhasKrKKVxlkGAgGuocG34P9757zQ3QU4wpj2kU5QJczuW5r17wk1zIanYwbW29No0wylW9u7T7kxvkm6XLiGiNDMl8GE5e-1snUa1MfowMr62hOvuoQPd_ezEf36eTxbjy6mqSKMrZJtdJcU7Al4QpbTixdgM1LQxTkUjJd8SLnKre4gEVJGNXSLDTFwKGSpmCSDtFZf7cN_nVr4kas_DY03UtBWEkAGOS4o4qeUsHHGIwVbXBrGd4FYLGTJXYexM6J6GQJEL2sbvG8X3S-_bn88DSa_eJEq23Hkj_Yfx58AiCbeCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572115140</pqid></control><display><type>article</type><title>Sampling Based Influence Maximization on Linear Threshold Model</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Jia, Su ; Chen, Ling</creator><creatorcontrib>Jia, Su ; Chen, Ling</creatorcontrib><description>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/989/1/012013</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Maximization ; Optimization ; Physics ; Sampling ; Social networks</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.989 (1), p.12013</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572115140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Jia, Su</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><title>Sampling Based Influence Maximization on Linear Threshold Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</description><subject>Maximization</subject><subject>Optimization</subject><subject>Physics</subject><subject>Sampling</subject><subject>Social networks</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkG1LwzAQgIMoOKd_QQp-8kNtLmna9JPo8GWyobD5OWR5cRldU5MN1F9vR0URBI-DO7jn7uBB6BTwBWDOMyhzkhasKrKKVxlkGAgGuocG34P9757zQ3QU4wpj2kU5QJczuW5r17wk1zIanYwbW29No0wylW9u7T7kxvkm6XLiGiNDMl8GE5e-1snUa1MfowMr62hOvuoQPd_ezEf36eTxbjy6mqSKMrZJtdJcU7Al4QpbTixdgM1LQxTkUjJd8SLnKre4gEVJGNXSLDTFwKGSpmCSDtFZf7cN_nVr4kas_DY03UtBWEkAGOS4o4qeUsHHGIwVbXBrGd4FYLGTJXYexM6J6GQJEL2sbvG8X3S-_bn88DSa_eJEq23Hkj_Yfx58AiCbeCc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jia, Su</creator><creator>Chen, Ling</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Sampling Based Influence Maximization on Linear Threshold Model</title><author>Jia, Su ; Chen, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Maximization</topic><topic>Optimization</topic><topic>Physics</topic><topic>Sampling</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Su</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Su</au><au>Chen, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Based Influence Maximization on Linear Threshold Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>989</volume><issue>1</issue><spage>12013</spage><pages>12013-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/989/1/012013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-04, Vol.989 (1), p.12013
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572115140
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Maximization
Optimization
Physics
Sampling
Social networks
title Sampling Based Influence Maximization on Linear Threshold Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Based%20Influence%20Maximization%20on%20Linear%20Threshold%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Jia,%20Su&rft.date=2018-04-01&rft.volume=989&rft.issue=1&rft.spage=12013&rft.pages=12013-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/989/1/012013&rft_dat=%3Cproquest_iop_j%3E2572115140%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572115140&rft_id=info:pmid/&rfr_iscdi=true