Loading…
Sampling Based Influence Maximization on Linear Threshold Model
A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the activ...
Saved in:
Published in: | Journal of physics. Conference series 2018-04, Vol.989 (1), p.12013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12013 |
container_title | Journal of physics. Conference series |
container_volume | 989 |
creator | Jia, Su Chen, Ling |
description | A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods. |
doi_str_mv | 10.1088/1742-6596/989/1/012013 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572115140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572115140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</originalsourceid><addsrcrecordid>eNqFkG1LwzAQgIMoOKd_QQp-8kNtLmna9JPo8GWyobD5OWR5cRldU5MN1F9vR0URBI-DO7jn7uBB6BTwBWDOMyhzkhasKrKKVxlkGAgGuocG34P9757zQ3QU4wpj2kU5QJczuW5r17wk1zIanYwbW29No0wylW9u7T7kxvkm6XLiGiNDMl8GE5e-1snUa1MfowMr62hOvuoQPd_ezEf36eTxbjy6mqSKMrZJtdJcU7Al4QpbTixdgM1LQxTkUjJd8SLnKre4gEVJGNXSLDTFwKGSpmCSDtFZf7cN_nVr4kas_DY03UtBWEkAGOS4o4qeUsHHGIwVbXBrGd4FYLGTJXYexM6J6GQJEL2sbvG8X3S-_bn88DSa_eJEq23Hkj_Yfx58AiCbeCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572115140</pqid></control><display><type>article</type><title>Sampling Based Influence Maximization on Linear Threshold Model</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Jia, Su ; Chen, Ling</creator><creatorcontrib>Jia, Su ; Chen, Ling</creatorcontrib><description>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/989/1/012013</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Maximization ; Optimization ; Physics ; Sampling ; Social networks</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.989 (1), p.12013</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572115140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Jia, Su</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><title>Sampling Based Influence Maximization on Linear Threshold Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</description><subject>Maximization</subject><subject>Optimization</subject><subject>Physics</subject><subject>Sampling</subject><subject>Social networks</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkG1LwzAQgIMoOKd_QQp-8kNtLmna9JPo8GWyobD5OWR5cRldU5MN1F9vR0URBI-DO7jn7uBB6BTwBWDOMyhzkhasKrKKVxlkGAgGuocG34P9757zQ3QU4wpj2kU5QJczuW5r17wk1zIanYwbW29No0wylW9u7T7kxvkm6XLiGiNDMl8GE5e-1snUa1MfowMr62hOvuoQPd_ezEf36eTxbjy6mqSKMrZJtdJcU7Al4QpbTixdgM1LQxTkUjJd8SLnKre4gEVJGNXSLDTFwKGSpmCSDtFZf7cN_nVr4kas_DY03UtBWEkAGOS4o4qeUsHHGIwVbXBrGd4FYLGTJXYexM6J6GQJEL2sbvG8X3S-_bn88DSa_eJEq23Hkj_Yfx58AiCbeCc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Jia, Su</creator><creator>Chen, Ling</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Sampling Based Influence Maximization on Linear Threshold Model</title><author>Jia, Su ; Chen, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Maximization</topic><topic>Optimization</topic><topic>Physics</topic><topic>Sampling</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Su</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Su</au><au>Chen, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Based Influence Maximization on Linear Threshold Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>989</volume><issue>1</issue><spage>12013</spage><pages>12013-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/989/1/012013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.989 (1), p.12013 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572115140 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access) |
subjects | Maximization Optimization Physics Sampling Social networks |
title | Sampling Based Influence Maximization on Linear Threshold Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Based%20Influence%20Maximization%20on%20Linear%20Threshold%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Jia,%20Su&rft.date=2018-04-01&rft.volume=989&rft.issue=1&rft.spage=12013&rft.pages=12013-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/989/1/012013&rft_dat=%3Cproquest_iop_j%3E2572115140%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-dcd8d31f728c0f82f3b1f47e2c14aa5d98648c4f061b7253daebd301819ae65a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572115140&rft_id=info:pmid/&rfr_iscdi=true |