Loading…

Method of mechanical quadratures for solving singular integral equations of various types

The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with gener...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2018-04, Vol.991 (1), p.12070
Main Authors: Sahakyan, A V, Amirjanyan, H A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003
cites cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003
container_end_page
container_issue 1
container_start_page 12070
container_title Journal of physics. Conference series
container_volume 991
creator Sahakyan, A V
Amirjanyan, H A
description The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.
doi_str_mv 10.1088/1742-6596/991/1/012070
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572118385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572118385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQJeeVGbj6ZNL2X4yURBvfAqZGmydXRNTdLB_r0plYkgmIuTwHnOe8gDwDlGVxhxnuIiI0nOyjwtS5ziFGGCCnQAJvvG4f7N-TE48X6NEI2nmICPJx1WtoLWwI1WK9nWSjbws5eVk6F32kNjHfS22dbtEvpY-kY6WLdBL10kdURDbVs_JGylq23vYdh12p-CIyMbr8--7yl4v715m90n8-e7h9n1PFEZ4iFZyJIYQnOscl3pYpEVSi1MrkvEFM2kQVpLU1GUZyZTjJmsRLTClDDCJFPxH1NwMeZ2zn722gextr1r40pBWEEw5pSzSOUjpZz13mkjOldvpNsJjMSgUQyGxGBLRI0Ci1FjHLwcB2vb_SQ_vsxef3Giq0xkyR_sPwu-AFcOgzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572118385</pqid></control><display><type>article</type><title>Method of mechanical quadratures for solving singular integral equations of various types</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Sahakyan, A V ; Amirjanyan, H A</creator><creatorcontrib>Sahakyan, A V ; Amirjanyan, H A</creatorcontrib><description>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/991/1/012070</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Differential equations ; Integral equations ; Integrals ; Linear algebra ; Mathematical analysis ; Physics ; Quadratures ; Singular integral equations</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.991 (1), p.12070</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</citedby><cites>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572118385?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sahakyan, A V</creatorcontrib><creatorcontrib>Amirjanyan, H A</creatorcontrib><title>Method of mechanical quadratures for solving singular integral equations of various types</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</description><subject>Differential equations</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Singular integral equations</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQJeeVGbj6ZNL2X4yURBvfAqZGmydXRNTdLB_r0plYkgmIuTwHnOe8gDwDlGVxhxnuIiI0nOyjwtS5ziFGGCCnQAJvvG4f7N-TE48X6NEI2nmICPJx1WtoLWwI1WK9nWSjbws5eVk6F32kNjHfS22dbtEvpY-kY6WLdBL10kdURDbVs_JGylq23vYdh12p-CIyMbr8--7yl4v715m90n8-e7h9n1PFEZ4iFZyJIYQnOscl3pYpEVSi1MrkvEFM2kQVpLU1GUZyZTjJmsRLTClDDCJFPxH1NwMeZ2zn722gextr1r40pBWEEw5pSzSOUjpZz13mkjOldvpNsJjMSgUQyGxGBLRI0Ci1FjHLwcB2vb_SQ_vsxef3Giq0xkyR_sPwu-AFcOgzo</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sahakyan, A V</creator><creator>Amirjanyan, H A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Method of mechanical quadratures for solving singular integral equations of various types</title><author>Sahakyan, A V ; Amirjanyan, H A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Differential equations</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Singular integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahakyan, A V</creatorcontrib><creatorcontrib>Amirjanyan, H A</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahakyan, A V</au><au>Amirjanyan, H A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of mechanical quadratures for solving singular integral equations of various types</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>991</volume><issue>1</issue><spage>12070</spage><pages>12070-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/991/1/012070</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-04, Vol.991 (1), p.12070
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572118385
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Differential equations
Integral equations
Integrals
Linear algebra
Mathematical analysis
Physics
Quadratures
Singular integral equations
title Method of mechanical quadratures for solving singular integral equations of various types
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20mechanical%20quadratures%20for%20solving%20singular%20integral%20equations%20of%20various%20types&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sahakyan,%20A%20V&rft.date=2018-04-01&rft.volume=991&rft.issue=1&rft.spage=12070&rft.pages=12070-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/991/1/012070&rft_dat=%3Cproquest_iop_j%3E2572118385%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572118385&rft_id=info:pmid/&rfr_iscdi=true