Loading…
Method of mechanical quadratures for solving singular integral equations of various types
The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with gener...
Saved in:
Published in: | Journal of physics. Conference series 2018-04, Vol.991 (1), p.12070 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003 |
container_end_page | |
container_issue | 1 |
container_start_page | 12070 |
container_title | Journal of physics. Conference series |
container_volume | 991 |
creator | Sahakyan, A V Amirjanyan, H A |
description | The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations. |
doi_str_mv | 10.1088/1742-6596/991/1/012070 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572118385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572118385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQJeeVGbj6ZNL2X4yURBvfAqZGmydXRNTdLB_r0plYkgmIuTwHnOe8gDwDlGVxhxnuIiI0nOyjwtS5ziFGGCCnQAJvvG4f7N-TE48X6NEI2nmICPJx1WtoLWwI1WK9nWSjbws5eVk6F32kNjHfS22dbtEvpY-kY6WLdBL10kdURDbVs_JGylq23vYdh12p-CIyMbr8--7yl4v715m90n8-e7h9n1PFEZ4iFZyJIYQnOscl3pYpEVSi1MrkvEFM2kQVpLU1GUZyZTjJmsRLTClDDCJFPxH1NwMeZ2zn722gextr1r40pBWEEw5pSzSOUjpZz13mkjOldvpNsJjMSgUQyGxGBLRI0Ci1FjHLwcB2vb_SQ_vsxef3Giq0xkyR_sPwu-AFcOgzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572118385</pqid></control><display><type>article</type><title>Method of mechanical quadratures for solving singular integral equations of various types</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Sahakyan, A V ; Amirjanyan, H A</creator><creatorcontrib>Sahakyan, A V ; Amirjanyan, H A</creatorcontrib><description>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/991/1/012070</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Differential equations ; Integral equations ; Integrals ; Linear algebra ; Mathematical analysis ; Physics ; Quadratures ; Singular integral equations</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.991 (1), p.12070</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</citedby><cites>FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572118385?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sahakyan, A V</creatorcontrib><creatorcontrib>Amirjanyan, H A</creatorcontrib><title>Method of mechanical quadratures for solving singular integral equations of various types</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</description><subject>Differential equations</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Singular integral equations</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQJeeVGbj6ZNL2X4yURBvfAqZGmydXRNTdLB_r0plYkgmIuTwHnOe8gDwDlGVxhxnuIiI0nOyjwtS5ziFGGCCnQAJvvG4f7N-TE48X6NEI2nmICPJx1WtoLWwI1WK9nWSjbws5eVk6F32kNjHfS22dbtEvpY-kY6WLdBL10kdURDbVs_JGylq23vYdh12p-CIyMbr8--7yl4v715m90n8-e7h9n1PFEZ4iFZyJIYQnOscl3pYpEVSi1MrkvEFM2kQVpLU1GUZyZTjJmsRLTClDDCJFPxH1NwMeZ2zn722gextr1r40pBWEEw5pSzSOUjpZz13mkjOldvpNsJjMSgUQyGxGBLRI0Ci1FjHLwcB2vb_SQ_vsxef3Giq0xkyR_sPwu-AFcOgzo</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sahakyan, A V</creator><creator>Amirjanyan, H A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Method of mechanical quadratures for solving singular integral equations of various types</title><author>Sahakyan, A V ; Amirjanyan, H A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Differential equations</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Singular integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahakyan, A V</creatorcontrib><creatorcontrib>Amirjanyan, H A</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahakyan, A V</au><au>Amirjanyan, H A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of mechanical quadratures for solving singular integral equations of various types</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>991</volume><issue>1</issue><spage>12070</spage><pages>12070-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/991/1/012070</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.991 (1), p.12070 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572118385 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access) |
subjects | Differential equations Integral equations Integrals Linear algebra Mathematical analysis Physics Quadratures Singular integral equations |
title | Method of mechanical quadratures for solving singular integral equations of various types |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20mechanical%20quadratures%20for%20solving%20singular%20integral%20equations%20of%20various%20types&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sahakyan,%20A%20V&rft.date=2018-04-01&rft.volume=991&rft.issue=1&rft.spage=12070&rft.pages=12070-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/991/1/012070&rft_dat=%3Cproquest_iop_j%3E2572118385%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ba92f2361c6ede7b47ccbf6e905c34af0eeafd3064f4c55f4903d132525a5c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572118385&rft_id=info:pmid/&rfr_iscdi=true |