Loading…

Development of efficiency module of organization of Arctic sea cargo transportation with application of neural network technologies

The analysis of software intended for organizing and managing the processes of sea cargo transportation has been carried out. The shortcomings of information resources are presented, for the organization of work in the Arctic and Subarctic regions of the Far East: the lack of decision support system...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2018-05, Vol.1015 (4), p.42057
Main Authors: Sobolevskaya, E Yu, Glushkov, S V, Levchenko, N G, Orlov, A P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analysis of software intended for organizing and managing the processes of sea cargo transportation has been carried out. The shortcomings of information resources are presented, for the organization of work in the Arctic and Subarctic regions of the Far East: the lack of decision support systems, the lack of factor analysis to calculate the time and cost of delivery. The architecture of the module for calculating the effectiveness of the organization of sea cargo transportation has been developed. The simulation process has been considered, which is based on the neural network. The main classification factors with their weighting coefficients have been identified. The architecture of the neural network has been developed to calculate the efficiency of the organization of sea cargo transportation in Arctic conditions. The architecture of the intellectual system of organization of sea cargo transportation has been developed, taking into account the difficult navigation conditions in the Arctic. Its implementation will allow one to provide the management of the shipping company with predictive analytics; to support decision-making; to calculate the most efficient delivery route; to provide on demand online transportation forecast, to minimize the shipping cost, delays in transit, and risks to cargo safety.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1015/4/042057