Loading…
Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance
A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer c...
Saved in:
Published in: | Sadhana (Bangalore) 2021-12, Vol.46 (4), Article 190 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Sadhana (Bangalore) |
container_volume | 46 |
creator | TEJASWINI, M SIVAPRAGASAM, M |
description | A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented. |
doi_str_mv | 10.1007/s12046-021-01707-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572251071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572251071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEmPwBThF4hxwkrZZjmjinwTiAucoSZ0uU9eWpENin56MIXHjZFvvPdv6FcUlg2sGIG8S41DWFDijwCRIujsqZqCkoLKW8jj3vKopL5U6Lc5SWgNwCQsxK_zLtpsCHewa3RQ-kTSYQtuTYZzCJuzMFIY8eDJtow09EtuZBkmHpgl9S7BpkfghEuxXpnfYEINxmFYYN6YjI8asbfbCeXHiTZfw4rfOi_f7u7flI31-fXha3j5Tl3-bKBqzQBBe1MIZKSyvPHBnFwJq5Z0xVjVVY5WE0jpvF41zjAtleCkUV74CMS-uDnvHOHxsMU16PWxjn09qXknOKwaSZRc_uFwcUoro9RjDxsQvzUDveeoDT5156h-eepdD4hBK2dy3GP9W_5P6BuRFez4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572251071</pqid></control><display><type>article</type><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><source>Springer Nature</source><creator>TEJASWINI, M ; SIVAPRAGASAM, M</creator><creatorcontrib>TEJASWINI, M ; SIVAPRAGASAM, M</creatorcontrib><description>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-021-01707-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Aerodynamic characteristics ; Design optimization ; Engineering ; Genetic algorithms ; Heat transfer ; Hypercubes ; Latin hypercube sampling ; Leading edges ; Multiple objective analysis ; Pareto optimum ; Reynolds averaged Navier-Stokes method ; Turbine blades ; Turbines</subject><ispartof>Sadhana (Bangalore), 2021-12, Vol.46 (4), Article 190</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</citedby><cites>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</cites><orcidid>0000-0002-1598-4263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>TEJASWINI, M</creatorcontrib><creatorcontrib>SIVAPRAGASAM, M</creatorcontrib><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</description><subject>Aerodynamic characteristics</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Heat transfer</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Leading edges</subject><subject>Multiple objective analysis</subject><subject>Pareto optimum</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Turbine blades</subject><subject>Turbines</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEmPwBThF4hxwkrZZjmjinwTiAucoSZ0uU9eWpENin56MIXHjZFvvPdv6FcUlg2sGIG8S41DWFDijwCRIujsqZqCkoLKW8jj3vKopL5U6Lc5SWgNwCQsxK_zLtpsCHewa3RQ-kTSYQtuTYZzCJuzMFIY8eDJtow09EtuZBkmHpgl9S7BpkfghEuxXpnfYEINxmFYYN6YjI8asbfbCeXHiTZfw4rfOi_f7u7flI31-fXha3j5Tl3-bKBqzQBBe1MIZKSyvPHBnFwJq5Z0xVjVVY5WE0jpvF41zjAtleCkUV74CMS-uDnvHOHxsMU16PWxjn09qXknOKwaSZRc_uFwcUoro9RjDxsQvzUDveeoDT5156h-eepdD4hBK2dy3GP9W_5P6BuRFez4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>TEJASWINI, M</creator><creator>SIVAPRAGASAM, M</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1598-4263</orcidid></search><sort><creationdate>20211201</creationdate><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><author>TEJASWINI, M ; SIVAPRAGASAM, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamic characteristics</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Heat transfer</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Leading edges</topic><topic>Multiple objective analysis</topic><topic>Pareto optimum</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Turbine blades</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEJASWINI, M</creatorcontrib><creatorcontrib>SIVAPRAGASAM, M</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEJASWINI, M</au><au>SIVAPRAGASAM, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>46</volume><issue>4</issue><artnum>190</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-021-01707-z</doi><orcidid>https://orcid.org/0000-0002-1598-4263</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-2499 |
ispartof | Sadhana (Bangalore), 2021-12, Vol.46 (4), Article 190 |
issn | 0256-2499 0973-7677 |
language | eng |
recordid | cdi_proquest_journals_2572251071 |
source | Springer Nature |
subjects | Aerodynamic characteristics Design optimization Engineering Genetic algorithms Heat transfer Hypercubes Latin hypercube sampling Leading edges Multiple objective analysis Pareto optimum Reynolds averaged Navier-Stokes method Turbine blades Turbines |
title | Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20design%20optimization%20of%20turbine%20blade%20leading%20edge%20for%20enhanced%20aerothermal%20performance&rft.jtitle=Sadhana%20(Bangalore)&rft.au=TEJASWINI,%20M&rft.date=2021-12-01&rft.volume=46&rft.issue=4&rft.artnum=190&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-021-01707-z&rft_dat=%3Cproquest_cross%3E2572251071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572251071&rft_id=info:pmid/&rfr_iscdi=true |