Loading…

Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance

A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer c...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) 2021-12, Vol.46 (4), Article 190
Main Authors: TEJASWINI, M, SIVAPRAGASAM, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503
cites cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503
container_end_page
container_issue 4
container_start_page
container_title Sadhana (Bangalore)
container_volume 46
creator TEJASWINI, M
SIVAPRAGASAM, M
description A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.
doi_str_mv 10.1007/s12046-021-01707-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572251071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572251071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEmPwBThF4hxwkrZZjmjinwTiAucoSZ0uU9eWpENin56MIXHjZFvvPdv6FcUlg2sGIG8S41DWFDijwCRIujsqZqCkoLKW8jj3vKopL5U6Lc5SWgNwCQsxK_zLtpsCHewa3RQ-kTSYQtuTYZzCJuzMFIY8eDJtow09EtuZBkmHpgl9S7BpkfghEuxXpnfYEINxmFYYN6YjI8asbfbCeXHiTZfw4rfOi_f7u7flI31-fXha3j5Tl3-bKBqzQBBe1MIZKSyvPHBnFwJq5Z0xVjVVY5WE0jpvF41zjAtleCkUV74CMS-uDnvHOHxsMU16PWxjn09qXknOKwaSZRc_uFwcUoro9RjDxsQvzUDveeoDT5156h-eepdD4hBK2dy3GP9W_5P6BuRFez4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572251071</pqid></control><display><type>article</type><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><source>Springer Nature</source><creator>TEJASWINI, M ; SIVAPRAGASAM, M</creator><creatorcontrib>TEJASWINI, M ; SIVAPRAGASAM, M</creatorcontrib><description>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-021-01707-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Aerodynamic characteristics ; Design optimization ; Engineering ; Genetic algorithms ; Heat transfer ; Hypercubes ; Latin hypercube sampling ; Leading edges ; Multiple objective analysis ; Pareto optimum ; Reynolds averaged Navier-Stokes method ; Turbine blades ; Turbines</subject><ispartof>Sadhana (Bangalore), 2021-12, Vol.46 (4), Article 190</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</citedby><cites>FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</cites><orcidid>0000-0002-1598-4263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>TEJASWINI, M</creatorcontrib><creatorcontrib>SIVAPRAGASAM, M</creatorcontrib><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</description><subject>Aerodynamic characteristics</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Heat transfer</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Leading edges</subject><subject>Multiple objective analysis</subject><subject>Pareto optimum</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Turbine blades</subject><subject>Turbines</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEmPwBThF4hxwkrZZjmjinwTiAucoSZ0uU9eWpENin56MIXHjZFvvPdv6FcUlg2sGIG8S41DWFDijwCRIujsqZqCkoLKW8jj3vKopL5U6Lc5SWgNwCQsxK_zLtpsCHewa3RQ-kTSYQtuTYZzCJuzMFIY8eDJtow09EtuZBkmHpgl9S7BpkfghEuxXpnfYEINxmFYYN6YjI8asbfbCeXHiTZfw4rfOi_f7u7flI31-fXha3j5Tl3-bKBqzQBBe1MIZKSyvPHBnFwJq5Z0xVjVVY5WE0jpvF41zjAtleCkUV74CMS-uDnvHOHxsMU16PWxjn09qXknOKwaSZRc_uFwcUoro9RjDxsQvzUDveeoDT5156h-eepdD4hBK2dy3GP9W_5P6BuRFez4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>TEJASWINI, M</creator><creator>SIVAPRAGASAM, M</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1598-4263</orcidid></search><sort><creationdate>20211201</creationdate><title>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</title><author>TEJASWINI, M ; SIVAPRAGASAM, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamic characteristics</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Heat transfer</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Leading edges</topic><topic>Multiple objective analysis</topic><topic>Pareto optimum</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Turbine blades</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEJASWINI, M</creatorcontrib><creatorcontrib>SIVAPRAGASAM, M</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEJASWINI, M</au><au>SIVAPRAGASAM, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>46</volume><issue>4</issue><artnum>190</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>A multi-objective design optimization is carried out to minimize the heat transfer in the leading edge region of an uncooled turbine blade and the blade profile loss. These objectives pose conflicting requirements. The leading edge of Pratt and Whitney JT9D turbine blade is parameterized by Béizer curves. The Latin hypercube sampling plan is used to sample the design space. Several turbine blade geometries are created and their heat transfer and aerodynamic characteristics are evaluated using high-fidelity Reynolds-averaged Navier–Stokes (RANS) simulations. Kriging surrogate models are constructed using these datasets. The surrogate models are used in a genetic algorithm optimization framework to obtain optimal designs. The maximum heat transfer in the leading edge region is reduced by 5.9%. The blade profile loss is reduced by 18.1%. The surrogate models are then subject to multi-objective genetic algorithm optimization to reduce both the maximum heat transfer and the blade profile loss. A Pareto-optimal front is obtained which contains the optimal solutions. Some optimal solutions in the Pareto front are chosen and the trade-off between the competing objective functions is presented.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-021-01707-z</doi><orcidid>https://orcid.org/0000-0002-1598-4263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0256-2499
ispartof Sadhana (Bangalore), 2021-12, Vol.46 (4), Article 190
issn 0256-2499
0973-7677
language eng
recordid cdi_proquest_journals_2572251071
source Springer Nature
subjects Aerodynamic characteristics
Design optimization
Engineering
Genetic algorithms
Heat transfer
Hypercubes
Latin hypercube sampling
Leading edges
Multiple objective analysis
Pareto optimum
Reynolds averaged Navier-Stokes method
Turbine blades
Turbines
title Multi-objective design optimization of turbine blade leading edge for enhanced aerothermal performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20design%20optimization%20of%20turbine%20blade%20leading%20edge%20for%20enhanced%20aerothermal%20performance&rft.jtitle=Sadhana%20(Bangalore)&rft.au=TEJASWINI,%20M&rft.date=2021-12-01&rft.volume=46&rft.issue=4&rft.artnum=190&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-021-01707-z&rft_dat=%3Cproquest_cross%3E2572251071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-eaa8e03f363ca73b25f02cb83069fcaab9d5db9704bcfb8dcc1239a243929f503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572251071&rft_id=info:pmid/&rfr_iscdi=true