Loading…

PAC Mode Estimation using PPR Martingale Confidence Sequences

We consider the problem of correctly identifying the \textit{mode} of a discrete distribution \(\mathcal{P}\) with sufficiently high probability by observing a sequence of i.i.d. samples drawn from \(\mathcal{P}\). This problem reduces to the estimation of a single parameter when \(\mathcal{P}\) has...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Shubham Anand Jain, Shah, Rohan, Gupta, Sanit, Mehta, Denil, Inderjeet Jayakumar Nair, Vora, Jian, Khyalia, Sushil, Das, Sourav, Ribeiro, Vinay J, Kalyanakrishnan, Shivaram
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shubham Anand Jain
Shah, Rohan
Gupta, Sanit
Mehta, Denil
Inderjeet Jayakumar Nair
Vora, Jian
Khyalia, Sushil
Das, Sourav
Ribeiro, Vinay J
Kalyanakrishnan, Shivaram
description We consider the problem of correctly identifying the \textit{mode} of a discrete distribution \(\mathcal{P}\) with sufficiently high probability by observing a sequence of i.i.d. samples drawn from \(\mathcal{P}\). This problem reduces to the estimation of a single parameter when \(\mathcal{P}\) has a support set of size \(K = 2\). After noting that this special case is tackled very well by prior-posterior-ratio (PPR) martingale confidence sequences \citep{waudby-ramdas-ppr}, we propose a generalisation to mode estimation, in which \(\mathcal{P}\) may take \(K \geq 2\) values. To begin, we show that the "one-versus-one" principle to generalise from \(K = 2\) to \(K \geq 2\) classes is more efficient than the "one-versus-rest" alternative. We then prove that our resulting stopping rule, denoted PPR-1v1, is asymptotically optimal (as the mistake probability is taken to \(0\)). PPR-1v1 is parameter-free and computationally light, and incurs significantly fewer samples than competitors even in the non-asymptotic regime. We demonstrate its gains in two practical applications of sampling: election forecasting and verification of smart contracts in blockchains.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2572355109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572355109</sourcerecordid><originalsourceid>FETCH-proquest_journals_25723551093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDXB0VvDNT0lVcC0uycxNLMnMz1MoLc7MS1cICAhS8E0sKgGyE3NSFZzz89IyU1LzklMVglMLS0GMYh4G1rTEnOJUXijNzaDs5hri7KFbUJQPVFJcEp-VX1qUB5SKNzI1NzI2NTU0sDQmThUAAkI3HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572355109</pqid></control><display><type>article</type><title>PAC Mode Estimation using PPR Martingale Confidence Sequences</title><source>Publicly Available Content Database</source><creator>Shubham Anand Jain ; Shah, Rohan ; Gupta, Sanit ; Mehta, Denil ; Inderjeet Jayakumar Nair ; Vora, Jian ; Khyalia, Sushil ; Das, Sourav ; Ribeiro, Vinay J ; Kalyanakrishnan, Shivaram</creator><creatorcontrib>Shubham Anand Jain ; Shah, Rohan ; Gupta, Sanit ; Mehta, Denil ; Inderjeet Jayakumar Nair ; Vora, Jian ; Khyalia, Sushil ; Das, Sourav ; Ribeiro, Vinay J ; Kalyanakrishnan, Shivaram</creatorcontrib><description>We consider the problem of correctly identifying the \textit{mode} of a discrete distribution \(\mathcal{P}\) with sufficiently high probability by observing a sequence of i.i.d. samples drawn from \(\mathcal{P}\). This problem reduces to the estimation of a single parameter when \(\mathcal{P}\) has a support set of size \(K = 2\). After noting that this special case is tackled very well by prior-posterior-ratio (PPR) martingale confidence sequences \citep{waudby-ramdas-ppr}, we propose a generalisation to mode estimation, in which \(\mathcal{P}\) may take \(K \geq 2\) values. To begin, we show that the "one-versus-one" principle to generalise from \(K = 2\) to \(K \geq 2\) classes is more efficient than the "one-versus-rest" alternative. We then prove that our resulting stopping rule, denoted PPR-1v1, is asymptotically optimal (as the mistake probability is taken to \(0\)). PPR-1v1 is parameter-free and computationally light, and incurs significantly fewer samples than competitors even in the non-asymptotic regime. We demonstrate its gains in two practical applications of sampling: election forecasting and verification of smart contracts in blockchains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cryptography ; Elections ; Martingales ; Parameter estimation</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572355109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Shubham Anand Jain</creatorcontrib><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Gupta, Sanit</creatorcontrib><creatorcontrib>Mehta, Denil</creatorcontrib><creatorcontrib>Inderjeet Jayakumar Nair</creatorcontrib><creatorcontrib>Vora, Jian</creatorcontrib><creatorcontrib>Khyalia, Sushil</creatorcontrib><creatorcontrib>Das, Sourav</creatorcontrib><creatorcontrib>Ribeiro, Vinay J</creatorcontrib><creatorcontrib>Kalyanakrishnan, Shivaram</creatorcontrib><title>PAC Mode Estimation using PPR Martingale Confidence Sequences</title><title>arXiv.org</title><description>We consider the problem of correctly identifying the \textit{mode} of a discrete distribution \(\mathcal{P}\) with sufficiently high probability by observing a sequence of i.i.d. samples drawn from \(\mathcal{P}\). This problem reduces to the estimation of a single parameter when \(\mathcal{P}\) has a support set of size \(K = 2\). After noting that this special case is tackled very well by prior-posterior-ratio (PPR) martingale confidence sequences \citep{waudby-ramdas-ppr}, we propose a generalisation to mode estimation, in which \(\mathcal{P}\) may take \(K \geq 2\) values. To begin, we show that the "one-versus-one" principle to generalise from \(K = 2\) to \(K \geq 2\) classes is more efficient than the "one-versus-rest" alternative. We then prove that our resulting stopping rule, denoted PPR-1v1, is asymptotically optimal (as the mistake probability is taken to \(0\)). PPR-1v1 is parameter-free and computationally light, and incurs significantly fewer samples than competitors even in the non-asymptotic regime. We demonstrate its gains in two practical applications of sampling: election forecasting and verification of smart contracts in blockchains.</description><subject>Cryptography</subject><subject>Elections</subject><subject>Martingales</subject><subject>Parameter estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDXB0VvDNT0lVcC0uycxNLMnMz1MoLc7MS1cICAhS8E0sKgGyE3NSFZzz89IyU1LzklMVglMLS0GMYh4G1rTEnOJUXijNzaDs5hri7KFbUJQPVFJcEp-VX1qUB5SKNzI1NzI2NTU0sDQmThUAAkI3HA</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Shubham Anand Jain</creator><creator>Shah, Rohan</creator><creator>Gupta, Sanit</creator><creator>Mehta, Denil</creator><creator>Inderjeet Jayakumar Nair</creator><creator>Vora, Jian</creator><creator>Khyalia, Sushil</creator><creator>Das, Sourav</creator><creator>Ribeiro, Vinay J</creator><creator>Kalyanakrishnan, Shivaram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220411</creationdate><title>PAC Mode Estimation using PPR Martingale Confidence Sequences</title><author>Shubham Anand Jain ; Shah, Rohan ; Gupta, Sanit ; Mehta, Denil ; Inderjeet Jayakumar Nair ; Vora, Jian ; Khyalia, Sushil ; Das, Sourav ; Ribeiro, Vinay J ; Kalyanakrishnan, Shivaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25723551093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cryptography</topic><topic>Elections</topic><topic>Martingales</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shubham Anand Jain</creatorcontrib><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Gupta, Sanit</creatorcontrib><creatorcontrib>Mehta, Denil</creatorcontrib><creatorcontrib>Inderjeet Jayakumar Nair</creatorcontrib><creatorcontrib>Vora, Jian</creatorcontrib><creatorcontrib>Khyalia, Sushil</creatorcontrib><creatorcontrib>Das, Sourav</creatorcontrib><creatorcontrib>Ribeiro, Vinay J</creatorcontrib><creatorcontrib>Kalyanakrishnan, Shivaram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubham Anand Jain</au><au>Shah, Rohan</au><au>Gupta, Sanit</au><au>Mehta, Denil</au><au>Inderjeet Jayakumar Nair</au><au>Vora, Jian</au><au>Khyalia, Sushil</au><au>Das, Sourav</au><au>Ribeiro, Vinay J</au><au>Kalyanakrishnan, Shivaram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PAC Mode Estimation using PPR Martingale Confidence Sequences</atitle><jtitle>arXiv.org</jtitle><date>2022-04-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of correctly identifying the \textit{mode} of a discrete distribution \(\mathcal{P}\) with sufficiently high probability by observing a sequence of i.i.d. samples drawn from \(\mathcal{P}\). This problem reduces to the estimation of a single parameter when \(\mathcal{P}\) has a support set of size \(K = 2\). After noting that this special case is tackled very well by prior-posterior-ratio (PPR) martingale confidence sequences \citep{waudby-ramdas-ppr}, we propose a generalisation to mode estimation, in which \(\mathcal{P}\) may take \(K \geq 2\) values. To begin, we show that the "one-versus-one" principle to generalise from \(K = 2\) to \(K \geq 2\) classes is more efficient than the "one-versus-rest" alternative. We then prove that our resulting stopping rule, denoted PPR-1v1, is asymptotically optimal (as the mistake probability is taken to \(0\)). PPR-1v1 is parameter-free and computationally light, and incurs significantly fewer samples than competitors even in the non-asymptotic regime. We demonstrate its gains in two practical applications of sampling: election forecasting and verification of smart contracts in blockchains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2572355109
source Publicly Available Content Database
subjects Cryptography
Elections
Martingales
Parameter estimation
title PAC Mode Estimation using PPR Martingale Confidence Sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PAC%20Mode%20Estimation%20using%20PPR%20Martingale%20Confidence%20Sequences&rft.jtitle=arXiv.org&rft.au=Shubham%20Anand%20Jain&rft.date=2022-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2572355109%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25723551093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572355109&rft_id=info:pmid/&rfr_iscdi=true