Loading…

Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline

Conductive polymers are widely used in many applications such as sensors, solar cells, diodes, electrodes, and actuators. Among of conductive polymers, Polyaniline (PANI) has gained more interests due to high environmental stability, electrical conductivity, easy processability, and low cost. Synthe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2018-08, Vol.1082 (1), p.12102
Main Authors: Netnapa, E., Mariatti, M., Ahmad, Z., Ohatake, N., Akasaka, H., Banhan, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73
cites cdi_FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73
container_end_page
container_issue 1
container_start_page 12102
container_title Journal of physics. Conference series
container_volume 1082
creator Netnapa, E.
Mariatti, M.
Ahmad, Z.
Ohatake, N.
Akasaka, H.
Banhan, L.
description Conductive polymers are widely used in many applications such as sensors, solar cells, diodes, electrodes, and actuators. Among of conductive polymers, Polyaniline (PANI) has gained more interests due to high environmental stability, electrical conductivity, easy processability, and low cost. Synthesis of PANI with different molar ratios between Dodecylbenzenesulfonic acid (DBSA) and Aniline (An) ([DBSA]/[An]) at 0.5, 1.0, and 1.5 were investigated. The increased molar ratio of surfactant affects to improvement in higher electrical conductivity of 18.91 × 10−2 S/m. This is due to the increasing of doping in PANI-DBSA which can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). At high molar ratio, thorn-liked structure and smooth surface of PANI are observed compared to irregular structure at low molar ratio. Moreover, the chemical structures of PANI-DBSA are investigated by Solid-state Nuclear magnetic resonance spectroscopy (NMR).
doi_str_mv 10.1088/1742-6596/1082/1/012102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572528458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572528458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2SfiS5nGN-MXFseh3SNsGO2tQkRfbvTa1MBMHcnBze5z3n8AJwjtEVRozFmKYkyjOex6ElMY4RJhiRAzDZK4f7P2PH4MS5LUJJeHQC1gutVekdNBo-mkZauJa-Ng5eK_-hVAs3vdWy9LL1ULYVnLV1U7cK1kHZtf5VufrLuzLNTo7aKTjSsnHq7LtOwcvN4nl-Fy2fbu_ns2VUpjjxEauwxgXKck45TTjnCNGEkSKcI3NJUp0xRQiWhDJUUFJKmuc45VwzmeVFRZMpuBjndta898p5sTW9bcNKQTJKMsLSjAWKjlRpjXNWadHZ-k3ancBIDAGKIRoxxDS0RGAxBhicl6OzNt3P6IfVfPMbFF2lA5z8Af-34hODDn5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572528458</pqid></control><display><type>article</type><title>Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Netnapa, E. ; Mariatti, M. ; Ahmad, Z. ; Ohatake, N. ; Akasaka, H. ; Banhan, L.</creator><creatorcontrib>Netnapa, E. ; Mariatti, M. ; Ahmad, Z. ; Ohatake, N. ; Akasaka, H. ; Banhan, L.</creatorcontrib><description>Conductive polymers are widely used in many applications such as sensors, solar cells, diodes, electrodes, and actuators. Among of conductive polymers, Polyaniline (PANI) has gained more interests due to high environmental stability, electrical conductivity, easy processability, and low cost. Synthesis of PANI with different molar ratios between Dodecylbenzenesulfonic acid (DBSA) and Aniline (An) ([DBSA]/[An]) at 0.5, 1.0, and 1.5 were investigated. The increased molar ratio of surfactant affects to improvement in higher electrical conductivity of 18.91 × 10−2 S/m. This is due to the increasing of doping in PANI-DBSA which can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). At high molar ratio, thorn-liked structure and smooth surface of PANI are observed compared to irregular structure at low molar ratio. Moreover, the chemical structures of PANI-DBSA are investigated by Solid-state Nuclear magnetic resonance spectroscopy (NMR).</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1082/1/012102</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Actuators ; Aniline ; Chemical synthesis ; Conducting polymers ; Electrical resistivity ; Fourier transforms ; Infrared spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Photovoltaic cells ; Physics ; Polyanilines ; Sodium dodecylbenzenesulfonate ; Solar cells ; Spectrum analysis ; Surfactants</subject><ispartof>Journal of physics. Conference series, 2018-08, Vol.1082 (1), p.12102</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73</citedby><cites>FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2572528458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Netnapa, E.</creatorcontrib><creatorcontrib>Mariatti, M.</creatorcontrib><creatorcontrib>Ahmad, Z.</creatorcontrib><creatorcontrib>Ohatake, N.</creatorcontrib><creatorcontrib>Akasaka, H.</creatorcontrib><creatorcontrib>Banhan, L.</creatorcontrib><title>Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Conductive polymers are widely used in many applications such as sensors, solar cells, diodes, electrodes, and actuators. Among of conductive polymers, Polyaniline (PANI) has gained more interests due to high environmental stability, electrical conductivity, easy processability, and low cost. Synthesis of PANI with different molar ratios between Dodecylbenzenesulfonic acid (DBSA) and Aniline (An) ([DBSA]/[An]) at 0.5, 1.0, and 1.5 were investigated. The increased molar ratio of surfactant affects to improvement in higher electrical conductivity of 18.91 × 10−2 S/m. This is due to the increasing of doping in PANI-DBSA which can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). At high molar ratio, thorn-liked structure and smooth surface of PANI are observed compared to irregular structure at low molar ratio. Moreover, the chemical structures of PANI-DBSA are investigated by Solid-state Nuclear magnetic resonance spectroscopy (NMR).</description><subject>Actuators</subject><subject>Aniline</subject><subject>Chemical synthesis</subject><subject>Conducting polymers</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Polyanilines</subject><subject>Sodium dodecylbenzenesulfonate</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2SfiS5nGN-MXFseh3SNsGO2tQkRfbvTa1MBMHcnBze5z3n8AJwjtEVRozFmKYkyjOex6ElMY4RJhiRAzDZK4f7P2PH4MS5LUJJeHQC1gutVekdNBo-mkZauJa-Ng5eK_-hVAs3vdWy9LL1ULYVnLV1U7cK1kHZtf5VufrLuzLNTo7aKTjSsnHq7LtOwcvN4nl-Fy2fbu_ns2VUpjjxEauwxgXKck45TTjnCNGEkSKcI3NJUp0xRQiWhDJUUFJKmuc45VwzmeVFRZMpuBjndta898p5sTW9bcNKQTJKMsLSjAWKjlRpjXNWadHZ-k3ancBIDAGKIRoxxDS0RGAxBhicl6OzNt3P6IfVfPMbFF2lA5z8Af-34hODDn5w</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Netnapa, E.</creator><creator>Mariatti, M.</creator><creator>Ahmad, Z.</creator><creator>Ohatake, N.</creator><creator>Akasaka, H.</creator><creator>Banhan, L.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180801</creationdate><title>Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline</title><author>Netnapa, E. ; Mariatti, M. ; Ahmad, Z. ; Ohatake, N. ; Akasaka, H. ; Banhan, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Aniline</topic><topic>Chemical synthesis</topic><topic>Conducting polymers</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Polyanilines</topic><topic>Sodium dodecylbenzenesulfonate</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Netnapa, E.</creatorcontrib><creatorcontrib>Mariatti, M.</creatorcontrib><creatorcontrib>Ahmad, Z.</creatorcontrib><creatorcontrib>Ohatake, N.</creatorcontrib><creatorcontrib>Akasaka, H.</creatorcontrib><creatorcontrib>Banhan, L.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netnapa, E.</au><au>Mariatti, M.</au><au>Ahmad, Z.</au><au>Ohatake, N.</au><au>Akasaka, H.</au><au>Banhan, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>1082</volume><issue>1</issue><spage>12102</spage><pages>12102-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Conductive polymers are widely used in many applications such as sensors, solar cells, diodes, electrodes, and actuators. Among of conductive polymers, Polyaniline (PANI) has gained more interests due to high environmental stability, electrical conductivity, easy processability, and low cost. Synthesis of PANI with different molar ratios between Dodecylbenzenesulfonic acid (DBSA) and Aniline (An) ([DBSA]/[An]) at 0.5, 1.0, and 1.5 were investigated. The increased molar ratio of surfactant affects to improvement in higher electrical conductivity of 18.91 × 10−2 S/m. This is due to the increasing of doping in PANI-DBSA which can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). At high molar ratio, thorn-liked structure and smooth surface of PANI are observed compared to irregular structure at low molar ratio. Moreover, the chemical structures of PANI-DBSA are investigated by Solid-state Nuclear magnetic resonance spectroscopy (NMR).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1082/1/012102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-08, Vol.1082 (1), p.12102
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572528458
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Actuators
Aniline
Chemical synthesis
Conducting polymers
Electrical resistivity
Fourier transforms
Infrared spectroscopy
NMR
NMR spectroscopy
Nuclear magnetic resonance
Photovoltaic cells
Physics
Polyanilines
Sodium dodecylbenzenesulfonate
Solar cells
Spectrum analysis
Surfactants
title Effects of Molar Ratios Between Surfactant and Aniline in Synthesis of Polyaniline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Molar%20Ratios%20Between%20Surfactant%20and%20Aniline%20in%20Synthesis%20of%20Polyaniline&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Netnapa,%20E.&rft.date=2018-08-01&rft.volume=1082&rft.issue=1&rft.spage=12102&rft.pages=12102-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1082/1/012102&rft_dat=%3Cproquest_cross%3E2572528458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-8d1f1b05697973999007382bfeca6a24f58e221a2780b72ca7661499f8a56bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572528458&rft_id=info:pmid/&rfr_iscdi=true