Loading…
Electronic and optical properties of pristine and Li/Na/K/Mg/Ca decorated net-Y: First-principles calculations
[Display omitted] •Pristine and decorated net-Y are investigated by using the first-principles method.•Decorated net-Y exhibits a significant optical response in a wide frequency range.•Both of pristine and decorated net-Y exhibit a strong optical anisotropic behavior.•Different elements decoration...
Saved in:
Published in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-09, Vol.271, p.115269, Article 115269 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•Pristine and decorated net-Y are investigated by using the first-principles method.•Decorated net-Y exhibits a significant optical response in a wide frequency range.•Both of pristine and decorated net-Y exhibit a strong optical anisotropic behavior.•Different elements decoration make the material shows different optical response.•Different decorated elements can significantly influence the optical response.
In this manuscripts, first principles based on density functional theory are used to study the optical properties of pristine and alkali/alkaline-earth metal atoms decorated net-Y. Based on the data of reflection, absorption, refraction, complex dielectric function and loss function under three different polarization, the optical properties of pristine and decorated net-Y are studied for the first time. The results show that the alkali/alkaline-earth metal decorated net-Y exhibits a significant optical response in a wide frequency range of 0 eV–27.0 eV. Under Ex and Ey polarization, alkali metals and alkaline-earth metals can notably change the reflection, refraction, absorption, and energy loss of net-Y. Under Ez polarization, except that net-Y exhibits a certain optical response in the higher ultraviolet band, there is no obvious response in other frequency ranges, and the modification of alkali/alkaline-earth metals will not have a significant impact on the optical properties of net-Y. Meanwhile, under Ex and Ey polarization, with the increase of the modified atomic number, the static dielectric constant, the maximum reflection coefficient, the static refractive index and the maximum absorption coefficient all show different degrees of oscillation behavior, not monotonic changes. Under Ez polarization, the relative optical property coefficients do not change significantly. These results imply that the optical performance of net-Y can be effectively controlled by changing the type of modified alkali/alkaline-earth metals atoms. |
---|---|
ISSN: | 0921-5107 1873-4944 |
DOI: | 10.1016/j.mseb.2021.115269 |