Loading…

Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes

The objective of this work is to evaluate the potential of oil palm biomass (OPB) in terms of physicochemical properties for producing biofuels via pyrolysis processes. The OPB included oil palm trunk (OPT), oil palm fronds (OPF), oil palm shell (OPS), oil palm roots (OPR), oil palm decanter cake (O...

Full description

Saved in:
Bibliographic Details
Published in:Biomass conversion and biorefinery 2021-10, Vol.11 (5), p.1987-2001
Main Authors: Shrivastava, Pranshu, Khongphakdi, Phonthip, Palamanit, Arkom, Kumar, Anil, Tekasakul, Perapong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this work is to evaluate the potential of oil palm biomass (OPB) in terms of physicochemical properties for producing biofuels via pyrolysis processes. The OPB included oil palm trunk (OPT), oil palm fronds (OPF), oil palm shell (OPS), oil palm roots (OPR), oil palm decanter cake (OPDC), empty fruit bunches (EFB), oil palm fiber (OPFB), and oil palm sewage sludge (OPSS). Their physicochemical properties are considered on several physical, chemical, and thermal aspects. The results showed that particle size distribution and bulk density of ground OPB were different. The proximate analysis results of OPB were consistent with the lignocellulose content and extractives. The carbon and hydrogen content of the OPB were also correlated with the organic components. Some OPB contained high lignin and extractives. The lignin content of OPB strongly influenced to thermal decomposition trend. OPB contained high inorganic elements such as potassium (K), calcium (C), and iron (Fe). The higher heating value and potential use as energy equivalent with fossil fuels of the OPB were relatively low. OPB had low thermal conductivity, and the dielectric constant, loss factor, and tangent loss of the OPB were also low. Thus, these results will be beneficial for the researchers and biofuel producers for choosing the appropriate OPB, as well as the operating conditions and reactor types.
ISSN:2190-6815
2190-6823
DOI:10.1007/s13399-019-00596-x