Loading…
Real-time fault diagnosis using deep fusion of features extracted by parallel long short-term memory with peephole and convolutional neural network
Analysis of one-dimensional vibration signals is the most common method used for safety analysis and health monitoring of rotary machines. How to effectively extract features involved in one-dimensional sequence data is crucial for the accuracy of real-time fault diagnosis. This article aims to deve...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2021-11, Vol.235 (10), p.1873-1897 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Analysis of one-dimensional vibration signals is the most common method used for safety analysis and health monitoring of rotary machines. How to effectively extract features involved in one-dimensional sequence data is crucial for the accuracy of real-time fault diagnosis. This article aims to develop more effective means of extracting useful features potentially involved in one-dimensional vibration signals. First, an improved parallel long short-term memory called parallel long short-term memory with peephole is designed by adding a peephole connection before each forget gate to prevent useless information transferring in the cell. It can not only solve the memory bottleneck problem of traditional long short-term memory for long sequence but also can make full use of all possible information helpful for feature extraction. Second, a fusion network with new training mechanism is designed to fuse features extracted from parallel long short-term memory with peephole and convolutional neural network, respectively. The fusion network can incorporate two-dimensional screenshot image into comprehensive feature extraction. It can provide more accurate fault diagnosis result since two-dimensional screenshot image is another form of expression for one-dimensional vibration sequence involving additional trend and locality information. Finally, real-time two-dimensional screenshot image is fed into convolutional neural network to secure a real-time online diagnosis which is the primary requirement of the engineers in health monitoring. Validity of the proposed method is verified by fault diagnosis for rolling bearing and gearbox. |
---|---|
ISSN: | 0959-6518 2041-3041 |
DOI: | 10.1177/0959651820948291 |