Loading…

Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate

The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the c...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2021-09, Vol.421, p.127387, Article 127387
Main Authors: Martins, R.L., Damm, D.D., Volu, R.M., Pinheiro, R.A., Rosa, F.M., Trava-Airoldi, V.J., de Vasconcelos, G., Barquete, D.M., Corat, E.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3
cites cdi_FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3
container_end_page
container_issue
container_start_page 127387
container_title Surface & coatings technology
container_volume 421
creator Martins, R.L.
Damm, D.D.
Volu, R.M.
Pinheiro, R.A.
Rosa, F.M.
Trava-Airoldi, V.J.
de Vasconcelos, G.
Barquete, D.M.
Corat, E.J.
description The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the coefficient of thermal expansion between steel and diamond produces cracked and delaminated diamond films. Thermodiffused vanadium carbide (TDVC) interlayer for straight CVD diamond deposition on steel, showed disruptive results; nevertheless, the coating thickening is limited to substrate with high carbon content and low alloy steel. This work introduces the use of laser cladding (LC) to form an intermediate layer of vanadium carbide (VC) from V4C3 powder. The LC process has a short cycle time and a high VC growth rate (5.6 μm/min). Comparing with TDVC, it represents a reduction of approximately 26 times in the process cycle time. We used AISI D6 steel as substrate and overlapped VC layers to raise the coat thickness up to 25 μm. The layers showed good adherence, low porosity, and the formation of V8C7 phase. Diamond films 2.8 μm thick were deposited by hot filament chemical vapor deposition (HFCVD) at 700 °C. The Raman spectroscopy of the diamond film on four overlapped VC layers (25 μm thick) showed a compressive residual stress of 2.7 GPa. The residual stress reduction was 1.8 GPa, when compared with the 7 μm thick single cladded VC layer. •Laser cladding applied to vanadium carbide deposition•Laser cladding vanadium carbide interlayer mitigating residual stress in diamond film•Laser cladding vanadium carbide coating as excellent carbon diffusional barrier•CVD diamond deposition on tool steel•High quality and adhesion of hot filament CVD diamond film
doi_str_mv 10.1016/j.surfcoat.2021.127387
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2573512970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897221005612</els_id><sourcerecordid>2573512970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC8gS6wQ7TmNnBypPqRIbHkvLscfFURoX2ynq35MqsGY1m3Pv6B6ELinJKaHVdZvHIVjtVcoLUtCcFpwJfoRmVPA6Y6zkx2hGigXPRM2LU3QWY0sIobwuZ-hjpSIErDtljOvX2Fu8U70ybthgrULjDGDXJwid2o-c9QEv3--wcWrje4PXwX-nT-x7HBNAh-PQxBRUgnN0YlUX4eL3ztHbw_3r8ilbvTw-L29XmWZCpIxpwQSzoqEVZ5QZEGBsUYqm5g1oU1V20RhRlg2vtNVgja6AldbQUtSal5rN0dXUuw3-a4CYZOuH0I8v5biYLWhRczJS1UTp4GMMYOU2uI0Ke0mJPEiUrfyTKA8S5SRxDN5MQRg37BwEGbWDXoNxAXSSxrv_Kn4AMdl_vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573512970</pqid></control><display><type>article</type><title>Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate</title><source>ScienceDirect Freedom Collection</source><creator>Martins, R.L. ; Damm, D.D. ; Volu, R.M. ; Pinheiro, R.A. ; Rosa, F.M. ; Trava-Airoldi, V.J. ; de Vasconcelos, G. ; Barquete, D.M. ; Corat, E.J.</creator><creatorcontrib>Martins, R.L. ; Damm, D.D. ; Volu, R.M. ; Pinheiro, R.A. ; Rosa, F.M. ; Trava-Airoldi, V.J. ; de Vasconcelos, G. ; Barquete, D.M. ; Corat, E.J.</creatorcontrib><description>The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the coefficient of thermal expansion between steel and diamond produces cracked and delaminated diamond films. Thermodiffused vanadium carbide (TDVC) interlayer for straight CVD diamond deposition on steel, showed disruptive results; nevertheless, the coating thickening is limited to substrate with high carbon content and low alloy steel. This work introduces the use of laser cladding (LC) to form an intermediate layer of vanadium carbide (VC) from V4C3 powder. The LC process has a short cycle time and a high VC growth rate (5.6 μm/min). Comparing with TDVC, it represents a reduction of approximately 26 times in the process cycle time. We used AISI D6 steel as substrate and overlapped VC layers to raise the coat thickness up to 25 μm. The layers showed good adherence, low porosity, and the formation of V8C7 phase. Diamond films 2.8 μm thick were deposited by hot filament chemical vapor deposition (HFCVD) at 700 °C. The Raman spectroscopy of the diamond film on four overlapped VC layers (25 μm thick) showed a compressive residual stress of 2.7 GPa. The residual stress reduction was 1.8 GPa, when compared with the 7 μm thick single cladded VC layer. •Laser cladding applied to vanadium carbide deposition•Laser cladding vanadium carbide interlayer mitigating residual stress in diamond film•Laser cladding vanadium carbide coating as excellent carbon diffusional barrier•CVD diamond deposition on tool steel•High quality and adhesion of hot filament CVD diamond film</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2021.127387</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbon content ; Chemical vapor deposition ; Compressive properties ; CVD diamond ; Cycle time ; Diamond films ; Diffusional barrier ; Interlayer ; Interlayers ; Laser beam cladding ; Laser cladding ; Low alloy steels ; Raman spectroscopy ; Residual stress ; Substrates ; Thermal expansion ; Thick films ; Thickening ; Transition metals ; Vanadium carbide</subject><ispartof>Surface &amp; coatings technology, 2021-09, Vol.421, p.127387, Article 127387</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3</citedby><cites>FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martins, R.L.</creatorcontrib><creatorcontrib>Damm, D.D.</creatorcontrib><creatorcontrib>Volu, R.M.</creatorcontrib><creatorcontrib>Pinheiro, R.A.</creatorcontrib><creatorcontrib>Rosa, F.M.</creatorcontrib><creatorcontrib>Trava-Airoldi, V.J.</creatorcontrib><creatorcontrib>de Vasconcelos, G.</creatorcontrib><creatorcontrib>Barquete, D.M.</creatorcontrib><creatorcontrib>Corat, E.J.</creatorcontrib><title>Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate</title><title>Surface &amp; coatings technology</title><description>The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the coefficient of thermal expansion between steel and diamond produces cracked and delaminated diamond films. Thermodiffused vanadium carbide (TDVC) interlayer for straight CVD diamond deposition on steel, showed disruptive results; nevertheless, the coating thickening is limited to substrate with high carbon content and low alloy steel. This work introduces the use of laser cladding (LC) to form an intermediate layer of vanadium carbide (VC) from V4C3 powder. The LC process has a short cycle time and a high VC growth rate (5.6 μm/min). Comparing with TDVC, it represents a reduction of approximately 26 times in the process cycle time. We used AISI D6 steel as substrate and overlapped VC layers to raise the coat thickness up to 25 μm. The layers showed good adherence, low porosity, and the formation of V8C7 phase. Diamond films 2.8 μm thick were deposited by hot filament chemical vapor deposition (HFCVD) at 700 °C. The Raman spectroscopy of the diamond film on four overlapped VC layers (25 μm thick) showed a compressive residual stress of 2.7 GPa. The residual stress reduction was 1.8 GPa, when compared with the 7 μm thick single cladded VC layer. •Laser cladding applied to vanadium carbide deposition•Laser cladding vanadium carbide interlayer mitigating residual stress in diamond film•Laser cladding vanadium carbide coating as excellent carbon diffusional barrier•CVD diamond deposition on tool steel•High quality and adhesion of hot filament CVD diamond film</description><subject>Carbon content</subject><subject>Chemical vapor deposition</subject><subject>Compressive properties</subject><subject>CVD diamond</subject><subject>Cycle time</subject><subject>Diamond films</subject><subject>Diffusional barrier</subject><subject>Interlayer</subject><subject>Interlayers</subject><subject>Laser beam cladding</subject><subject>Laser cladding</subject><subject>Low alloy steels</subject><subject>Raman spectroscopy</subject><subject>Residual stress</subject><subject>Substrates</subject><subject>Thermal expansion</subject><subject>Thick films</subject><subject>Thickening</subject><subject>Transition metals</subject><subject>Vanadium carbide</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC8gS6wQ7TmNnBypPqRIbHkvLscfFURoX2ynq35MqsGY1m3Pv6B6ELinJKaHVdZvHIVjtVcoLUtCcFpwJfoRmVPA6Y6zkx2hGigXPRM2LU3QWY0sIobwuZ-hjpSIErDtljOvX2Fu8U70ybthgrULjDGDXJwid2o-c9QEv3--wcWrje4PXwX-nT-x7HBNAh-PQxBRUgnN0YlUX4eL3ztHbw_3r8ilbvTw-L29XmWZCpIxpwQSzoqEVZ5QZEGBsUYqm5g1oU1V20RhRlg2vtNVgja6AldbQUtSal5rN0dXUuw3-a4CYZOuH0I8v5biYLWhRczJS1UTp4GMMYOU2uI0Ke0mJPEiUrfyTKA8S5SRxDN5MQRg37BwEGbWDXoNxAXSSxrv_Kn4AMdl_vg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Martins, R.L.</creator><creator>Damm, D.D.</creator><creator>Volu, R.M.</creator><creator>Pinheiro, R.A.</creator><creator>Rosa, F.M.</creator><creator>Trava-Airoldi, V.J.</creator><creator>de Vasconcelos, G.</creator><creator>Barquete, D.M.</creator><creator>Corat, E.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210915</creationdate><title>Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate</title><author>Martins, R.L. ; Damm, D.D. ; Volu, R.M. ; Pinheiro, R.A. ; Rosa, F.M. ; Trava-Airoldi, V.J. ; de Vasconcelos, G. ; Barquete, D.M. ; Corat, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon content</topic><topic>Chemical vapor deposition</topic><topic>Compressive properties</topic><topic>CVD diamond</topic><topic>Cycle time</topic><topic>Diamond films</topic><topic>Diffusional barrier</topic><topic>Interlayer</topic><topic>Interlayers</topic><topic>Laser beam cladding</topic><topic>Laser cladding</topic><topic>Low alloy steels</topic><topic>Raman spectroscopy</topic><topic>Residual stress</topic><topic>Substrates</topic><topic>Thermal expansion</topic><topic>Thick films</topic><topic>Thickening</topic><topic>Transition metals</topic><topic>Vanadium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, R.L.</creatorcontrib><creatorcontrib>Damm, D.D.</creatorcontrib><creatorcontrib>Volu, R.M.</creatorcontrib><creatorcontrib>Pinheiro, R.A.</creatorcontrib><creatorcontrib>Rosa, F.M.</creatorcontrib><creatorcontrib>Trava-Airoldi, V.J.</creatorcontrib><creatorcontrib>de Vasconcelos, G.</creatorcontrib><creatorcontrib>Barquete, D.M.</creatorcontrib><creatorcontrib>Corat, E.J.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, R.L.</au><au>Damm, D.D.</au><au>Volu, R.M.</au><au>Pinheiro, R.A.</au><au>Rosa, F.M.</au><au>Trava-Airoldi, V.J.</au><au>de Vasconcelos, G.</au><au>Barquete, D.M.</au><au>Corat, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>421</volume><spage>127387</spage><pages>127387-</pages><artnum>127387</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The chemical vapor deposition of diamond film on steel substrate remains with main drawbacks demanding a proper solution. Some proposed interlayers tackled with the high carbon diffusivity into steel and with the graphitic sp2 bonds catalyzed by transition metal. However, the large mismatch of the coefficient of thermal expansion between steel and diamond produces cracked and delaminated diamond films. Thermodiffused vanadium carbide (TDVC) interlayer for straight CVD diamond deposition on steel, showed disruptive results; nevertheless, the coating thickening is limited to substrate with high carbon content and low alloy steel. This work introduces the use of laser cladding (LC) to form an intermediate layer of vanadium carbide (VC) from V4C3 powder. The LC process has a short cycle time and a high VC growth rate (5.6 μm/min). Comparing with TDVC, it represents a reduction of approximately 26 times in the process cycle time. We used AISI D6 steel as substrate and overlapped VC layers to raise the coat thickness up to 25 μm. The layers showed good adherence, low porosity, and the formation of V8C7 phase. Diamond films 2.8 μm thick were deposited by hot filament chemical vapor deposition (HFCVD) at 700 °C. The Raman spectroscopy of the diamond film on four overlapped VC layers (25 μm thick) showed a compressive residual stress of 2.7 GPa. The residual stress reduction was 1.8 GPa, when compared with the 7 μm thick single cladded VC layer. •Laser cladding applied to vanadium carbide deposition•Laser cladding vanadium carbide interlayer mitigating residual stress in diamond film•Laser cladding vanadium carbide coating as excellent carbon diffusional barrier•CVD diamond deposition on tool steel•High quality and adhesion of hot filament CVD diamond film</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2021.127387</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2021-09, Vol.421, p.127387, Article 127387
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2573512970
source ScienceDirect Freedom Collection
subjects Carbon content
Chemical vapor deposition
Compressive properties
CVD diamond
Cycle time
Diamond films
Diffusional barrier
Interlayer
Interlayers
Laser beam cladding
Laser cladding
Low alloy steels
Raman spectroscopy
Residual stress
Substrates
Thermal expansion
Thick films
Thickening
Transition metals
Vanadium carbide
title Laser cladding of vanadium carbide interlayer for CVD diamond growth on steel substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20cladding%20of%20vanadium%20carbide%20interlayer%20for%20CVD%20diamond%20growth%20on%20steel%20substrate&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Martins,%20R.L.&rft.date=2021-09-15&rft.volume=421&rft.spage=127387&rft.pages=127387-&rft.artnum=127387&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2021.127387&rft_dat=%3Cproquest_cross%3E2573512970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-3c8383f8b167313de8edf248b97becd66f5bd844b76cfcefdc6e34fd1489c74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573512970&rft_id=info:pmid/&rfr_iscdi=true