Loading…

Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion

•Layered specimen of 316L and IN718 has been fabricated by multiple material additive manufacturing.•The crack propagation mechanism was investigated under three point bending, and recorded via direct current potential drop method, then analysed via correlation between the stress intensity factor an...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fatigue 2021-11, Vol.152, p.106454, Article 106454
Main Authors: Duval-Chaneac, M.S., Gao, N., Khan, R.H.U., Giles, M., Georgilas, K., Zhao, X., Reed, P.A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3
cites cdi_FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3
container_end_page
container_issue
container_start_page 106454
container_title International journal of fatigue
container_volume 152
creator Duval-Chaneac, M.S.
Gao, N.
Khan, R.H.U.
Giles, M.
Georgilas, K.
Zhao, X.
Reed, P.A.S.
description •Layered specimen of 316L and IN718 has been fabricated by multiple material additive manufacturing.•The crack propagation mechanism was investigated under three point bending, and recorded via direct current potential drop method, then analysed via correlation between the stress intensity factor and the final fracture surface.•Mechanisms of shielding and antishielding in the crack propagation were investigated through a 4 alternated layer specimen.•Relation between the as-built microstructure and the tensile properties of each alloy was used to put in perspective the results obtained in the different crack propagation tests. Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The microstructure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.
doi_str_mv 10.1016/j.ijfatigue.2021.106454
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2573513943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321003121</els_id><sourcerecordid>2573513943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3</originalsourceid><addsrcrecordid>eNqFkEtPHDEQhC1EJBaS34ClnGdx-zEzPiIEZKVVcknOlh894GF3Z2N7QPvvMRqUa04lleqrVhch18DWwKC9GddxHGyJTzOuOeNQ3VYqeUZW0He6EVLxc7JiIHkDwMUFucx5ZIxp1qkVeXlYUOqT9S_0KU1v5ZnGA9387KC_EdBu6X7eldjsbcEU7S7TnT1hwkBzSbMvc8JMB-tS9DURqDvVQMZEj9NbqOKqN8w5Toev5MtQefz2qVfkz8P977sfzfbX4-budtt4oXlptOt1H4QbWNuCAgTpeMcGULp1Qy-44za4IMFpbJWzyEB5LZV3KHuOPogr8n3pPabp74y5mHGa06GeNFx1QoHQUtRUt6R8mnJOOJhjinubTgaY-VjWjObfsuZjWbMsW8nbhcT6xGvEZLKPePAYYkJfTJjifzveAYNdhlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573513943</pqid></control><display><type>article</type><title>Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion</title><source>Elsevier</source><creator>Duval-Chaneac, M.S. ; Gao, N. ; Khan, R.H.U. ; Giles, M. ; Georgilas, K. ; Zhao, X. ; Reed, P.A.S.</creator><creatorcontrib>Duval-Chaneac, M.S. ; Gao, N. ; Khan, R.H.U. ; Giles, M. ; Georgilas, K. ; Zhao, X. ; Reed, P.A.S.</creatorcontrib><description>•Layered specimen of 316L and IN718 has been fabricated by multiple material additive manufacturing.•The crack propagation mechanism was investigated under three point bending, and recorded via direct current potential drop method, then analysed via correlation between the stress intensity factor and the final fracture surface.•Mechanisms of shielding and antishielding in the crack propagation were investigated through a 4 alternated layer specimen.•Relation between the as-built microstructure and the tensile properties of each alloy was used to put in perspective the results obtained in the different crack propagation tests. Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The microstructure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106454</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Additive manufacturing (AM) ; Crack growth rate ; Crack propagation ; Fatigue analysis ; Fatigue failure ; Fatigue tests ; Fracture mechanics ; Interface ; Materials fatigue ; Mechanical properties ; Multi-materials ; Multilayers ; Nanohardness ; Nickel base alloys ; Optimization ; Powder beds ; Rapid prototyping ; Superalloys</subject><ispartof>International journal of fatigue, 2021-11, Vol.152, p.106454, Article 106454</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3</citedby><cites>FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3</cites><orcidid>0000-0002-7430-0319 ; 0000-0002-2258-0347 ; 0000-0001-9097-0892 ; 0000-0002-3091-9427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Duval-Chaneac, M.S.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Khan, R.H.U.</creatorcontrib><creatorcontrib>Giles, M.</creatorcontrib><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Reed, P.A.S.</creatorcontrib><title>Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion</title><title>International journal of fatigue</title><description>•Layered specimen of 316L and IN718 has been fabricated by multiple material additive manufacturing.•The crack propagation mechanism was investigated under three point bending, and recorded via direct current potential drop method, then analysed via correlation between the stress intensity factor and the final fracture surface.•Mechanisms of shielding and antishielding in the crack propagation were investigated through a 4 alternated layer specimen.•Relation between the as-built microstructure and the tensile properties of each alloy was used to put in perspective the results obtained in the different crack propagation tests. Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The microstructure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.</description><subject>Additive manufacturing (AM)</subject><subject>Crack growth rate</subject><subject>Crack propagation</subject><subject>Fatigue analysis</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Interface</subject><subject>Materials fatigue</subject><subject>Mechanical properties</subject><subject>Multi-materials</subject><subject>Multilayers</subject><subject>Nanohardness</subject><subject>Nickel base alloys</subject><subject>Optimization</subject><subject>Powder beds</subject><subject>Rapid prototyping</subject><subject>Superalloys</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPHDEQhC1EJBaS34ClnGdx-zEzPiIEZKVVcknOlh894GF3Z2N7QPvvMRqUa04lleqrVhch18DWwKC9GddxHGyJTzOuOeNQ3VYqeUZW0He6EVLxc7JiIHkDwMUFucx5ZIxp1qkVeXlYUOqT9S_0KU1v5ZnGA9387KC_EdBu6X7eldjsbcEU7S7TnT1hwkBzSbMvc8JMB-tS9DURqDvVQMZEj9NbqOKqN8w5Toev5MtQefz2qVfkz8P977sfzfbX4-budtt4oXlptOt1H4QbWNuCAgTpeMcGULp1Qy-44za4IMFpbJWzyEB5LZV3KHuOPogr8n3pPabp74y5mHGa06GeNFx1QoHQUtRUt6R8mnJOOJhjinubTgaY-VjWjObfsuZjWbMsW8nbhcT6xGvEZLKPePAYYkJfTJjifzveAYNdhlQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Duval-Chaneac, M.S.</creator><creator>Gao, N.</creator><creator>Khan, R.H.U.</creator><creator>Giles, M.</creator><creator>Georgilas, K.</creator><creator>Zhao, X.</creator><creator>Reed, P.A.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7430-0319</orcidid><orcidid>https://orcid.org/0000-0002-2258-0347</orcidid><orcidid>https://orcid.org/0000-0001-9097-0892</orcidid><orcidid>https://orcid.org/0000-0002-3091-9427</orcidid></search><sort><creationdate>202111</creationdate><title>Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion</title><author>Duval-Chaneac, M.S. ; Gao, N. ; Khan, R.H.U. ; Giles, M. ; Georgilas, K. ; Zhao, X. ; Reed, P.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing (AM)</topic><topic>Crack growth rate</topic><topic>Crack propagation</topic><topic>Fatigue analysis</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Interface</topic><topic>Materials fatigue</topic><topic>Mechanical properties</topic><topic>Multi-materials</topic><topic>Multilayers</topic><topic>Nanohardness</topic><topic>Nickel base alloys</topic><topic>Optimization</topic><topic>Powder beds</topic><topic>Rapid prototyping</topic><topic>Superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval-Chaneac, M.S.</creatorcontrib><creatorcontrib>Gao, N.</creatorcontrib><creatorcontrib>Khan, R.H.U.</creatorcontrib><creatorcontrib>Giles, M.</creatorcontrib><creatorcontrib>Georgilas, K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Reed, P.A.S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval-Chaneac, M.S.</au><au>Gao, N.</au><au>Khan, R.H.U.</au><au>Giles, M.</au><au>Georgilas, K.</au><au>Zhao, X.</au><au>Reed, P.A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion</atitle><jtitle>International journal of fatigue</jtitle><date>2021-11</date><risdate>2021</risdate><volume>152</volume><spage>106454</spage><pages>106454-</pages><artnum>106454</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Layered specimen of 316L and IN718 has been fabricated by multiple material additive manufacturing.•The crack propagation mechanism was investigated under three point bending, and recorded via direct current potential drop method, then analysed via correlation between the stress intensity factor and the final fracture surface.•Mechanisms of shielding and antishielding in the crack propagation were investigated through a 4 alternated layer specimen.•Relation between the as-built microstructure and the tensile properties of each alloy was used to put in perspective the results obtained in the different crack propagation tests. Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The microstructure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106454</doi><orcidid>https://orcid.org/0000-0002-7430-0319</orcidid><orcidid>https://orcid.org/0000-0002-2258-0347</orcidid><orcidid>https://orcid.org/0000-0001-9097-0892</orcidid><orcidid>https://orcid.org/0000-0002-3091-9427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2021-11, Vol.152, p.106454, Article 106454
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2573513943
source Elsevier
subjects Additive manufacturing (AM)
Crack growth rate
Crack propagation
Fatigue analysis
Fatigue failure
Fatigue tests
Fracture mechanics
Interface
Materials fatigue
Mechanical properties
Multi-materials
Multilayers
Nanohardness
Nickel base alloys
Optimization
Powder beds
Rapid prototyping
Superalloys
title Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20in%20IN718/316L%20multi-materials%20layered%20structures%20fabricated%20by%20laser%20powder%20bed%20fusion&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Duval-Chaneac,%20M.S.&rft.date=2021-11&rft.volume=152&rft.spage=106454&rft.pages=106454-&rft.artnum=106454&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106454&rft_dat=%3Cproquest_cross%3E2573513943%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-9b898d3bf066151e14b270f1596bf832b2adbd41b9e65bae015c945cbe482ecd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573513943&rft_id=info:pmid/&rfr_iscdi=true