Loading…

Use of Prandtl-Ishlinskii hysteresis operators for Coulomb friction modeling with presliding

Prandtl-Ishlinskii stop-type hysteresis operators allow for modeling elasto-plasticity in the relative stress-strain coordinates including the saturation level of the residual constant-tension flow. This lies in direct equivalence to the force-displacement characteristics of nonlinear Coulomb fricti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2017-02, Vol.811 (1), p.12013
Main Authors: Ruderman, Michael, Rachinskii, Dmitrii
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prandtl-Ishlinskii stop-type hysteresis operators allow for modeling elasto-plasticity in the relative stress-strain coordinates including the saturation level of the residual constant-tension flow. This lies in direct equivalence to the force-displacement characteristics of nonlinear Coulomb friction, whose constant average value at unidirectional motion depends on the motion sign only, after the transient presliding phase at each motion reversal. In this work, we analyze and demonstrate the use of Prandtl-Ishlinskii operators for modeling the Coulomb friction with presliding phase. No viscous i.e. velocity-dependent component is considered at this stage, and the constant damping rate of the Coulomb friction is combined with the rate-independent losses of presliding hysteresis. The general case of Prandtl-Ishlinskii operator with a continuous distribution function is considered together with a finite elements case, which is useful for implementation in multiple applications. Finally, identification of parameters is addressed and discussed along with two experimental examples.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/811/1/012013