Loading…
MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries
The Co 3 O 4 @rGO derived from metal–organic frameworks (MOFs) were prepared by a simple solvothermal method followed by the heat treatment. In a typical preparation process, the Co-MOF (ZIF-67) acts as the precursor to obtain desirable nano Co 3 O 4 while the reduced graphene oxide (rGO) layer enha...
Saved in:
Published in: | Ionics 2021-10, Vol.27 (10), p.4197-4204 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123 |
container_end_page | 4204 |
container_issue | 10 |
container_start_page | 4197 |
container_title | Ionics |
container_volume | 27 |
creator | Wang, Fengyue Ye, Yusheng Wang, Zhimeng Lu, Jiahao Zhang, Qi Zhou, Xinping Xiong, Qiming Qiu, Xiangyun Wei, Tao |
description | The Co
3
O
4
@rGO derived from metal–organic frameworks (MOFs) were prepared by a simple solvothermal method followed by the heat treatment. In a typical preparation process, the Co-MOF (ZIF-67) acts as the precursor to obtain desirable nano Co
3
O
4
while the reduced graphene oxide (rGO) layer enhances the conductivity. The materials were respectively characterized by XRD, SEM, and then further electrochemical tests. As anode materials for lithium-ion batteries (LIBs), the material of Co
3
O
4
@rGO exhibit overall superb electrochemical properties especially when the rGO proportion is 20%, it displays higher capacity (818.5 mAh g
−1
at 100 mA g
−1
), higher cycling stability (87.3% capacity retention after 100 cycles), and better rate performance. The work may throw some lights on the preparation of other transition metal oxides by structure design with rGO layer for further applications.
Graphical abstract |
doi_str_mv | 10.1007/s11581-021-04225-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574029192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574029192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FkkjbNTVncVVjpRQ-eQpqmu1m2TU26gv_erBW8CTPMO7z3Bj6Erim5pYSIu0hpXlJMIC0HyDE_QTNaFoCJKMgpmhHJBRaEi3N0EeOOkKKgIGbo_aVa4sYG92mbbOFZxe_Dqsp63Xvju8FHN9qY6TS9b5Jqfci2brPFgw1Jd7o3Ntu7cesOHXa-z2o9jqnOxkt01up9tFe_d47elo-viye8rlbPi4c1NozKEXMgDGpuqJFACYAsaM5YWegcTA5c2tY0wHlJed5wJqCULQdba1KwphYU2BzdTL1D8B8HG0e184fQp5cKcsEJSCqPLphcJvgYg23VEFynw5eiRB0RqgmhSgjVD0LFU4hNoZjM_caGv-p_Ut_XrnIJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574029192</pqid></control><display><type>article</type><title>MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries</title><source>Springer Link</source><creator>Wang, Fengyue ; Ye, Yusheng ; Wang, Zhimeng ; Lu, Jiahao ; Zhang, Qi ; Zhou, Xinping ; Xiong, Qiming ; Qiu, Xiangyun ; Wei, Tao</creator><creatorcontrib>Wang, Fengyue ; Ye, Yusheng ; Wang, Zhimeng ; Lu, Jiahao ; Zhang, Qi ; Zhou, Xinping ; Xiong, Qiming ; Qiu, Xiangyun ; Wei, Tao</creatorcontrib><description>The Co
3
O
4
@rGO derived from metal–organic frameworks (MOFs) were prepared by a simple solvothermal method followed by the heat treatment. In a typical preparation process, the Co-MOF (ZIF-67) acts as the precursor to obtain desirable nano Co
3
O
4
while the reduced graphene oxide (rGO) layer enhances the conductivity. The materials were respectively characterized by XRD, SEM, and then further electrochemical tests. As anode materials for lithium-ion batteries (LIBs), the material of Co
3
O
4
@rGO exhibit overall superb electrochemical properties especially when the rGO proportion is 20%, it displays higher capacity (818.5 mAh g
−1
at 100 mA g
−1
), higher cycling stability (87.3% capacity retention after 100 cycles), and better rate performance. The work may throw some lights on the preparation of other transition metal oxides by structure design with rGO layer for further applications.
Graphical abstract</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04225-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Chemistry ; Chemistry and Materials Science ; Cobalt oxides ; Condensed Matter Physics ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy Storage ; Graphene ; Heat treatment ; Lithium ; Lithium-ion batteries ; Metal-organic frameworks ; Nanocomposites ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Transition metal oxides</subject><ispartof>Ionics, 2021-10, Vol.27 (10), p.4197-4204</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123</citedby><cites>FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Fengyue</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Wang, Zhimeng</creatorcontrib><creatorcontrib>Lu, Jiahao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Xiong, Qiming</creatorcontrib><creatorcontrib>Qiu, Xiangyun</creatorcontrib><creatorcontrib>Wei, Tao</creatorcontrib><title>MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The Co
3
O
4
@rGO derived from metal–organic frameworks (MOFs) were prepared by a simple solvothermal method followed by the heat treatment. In a typical preparation process, the Co-MOF (ZIF-67) acts as the precursor to obtain desirable nano Co
3
O
4
while the reduced graphene oxide (rGO) layer enhances the conductivity. The materials were respectively characterized by XRD, SEM, and then further electrochemical tests. As anode materials for lithium-ion batteries (LIBs), the material of Co
3
O
4
@rGO exhibit overall superb electrochemical properties especially when the rGO proportion is 20%, it displays higher capacity (818.5 mAh g
−1
at 100 mA g
−1
), higher cycling stability (87.3% capacity retention after 100 cycles), and better rate performance. The work may throw some lights on the preparation of other transition metal oxides by structure design with rGO layer for further applications.
Graphical abstract</description><subject>Anodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt oxides</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Graphene</subject><subject>Heat treatment</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Transition metal oxides</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FkkjbNTVncVVjpRQ-eQpqmu1m2TU26gv_erBW8CTPMO7z3Bj6Erim5pYSIu0hpXlJMIC0HyDE_QTNaFoCJKMgpmhHJBRaEi3N0EeOOkKKgIGbo_aVa4sYG92mbbOFZxe_Dqsp63Xvju8FHN9qY6TS9b5Jqfci2brPFgw1Jd7o3Ntu7cesOHXa-z2o9jqnOxkt01up9tFe_d47elo-viye8rlbPi4c1NozKEXMgDGpuqJFACYAsaM5YWegcTA5c2tY0wHlJed5wJqCULQdba1KwphYU2BzdTL1D8B8HG0e184fQp5cKcsEJSCqPLphcJvgYg23VEFynw5eiRB0RqgmhSgjVD0LFU4hNoZjM_caGv-p_Ut_XrnIJ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wang, Fengyue</creator><creator>Ye, Yusheng</creator><creator>Wang, Zhimeng</creator><creator>Lu, Jiahao</creator><creator>Zhang, Qi</creator><creator>Zhou, Xinping</creator><creator>Xiong, Qiming</creator><creator>Qiu, Xiangyun</creator><creator>Wei, Tao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries</title><author>Wang, Fengyue ; Ye, Yusheng ; Wang, Zhimeng ; Lu, Jiahao ; Zhang, Qi ; Zhou, Xinping ; Xiong, Qiming ; Qiu, Xiangyun ; Wei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt oxides</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Graphene</topic><topic>Heat treatment</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fengyue</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Wang, Zhimeng</creatorcontrib><creatorcontrib>Lu, Jiahao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Xiong, Qiming</creatorcontrib><creatorcontrib>Qiu, Xiangyun</creatorcontrib><creatorcontrib>Wei, Tao</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fengyue</au><au>Ye, Yusheng</au><au>Wang, Zhimeng</au><au>Lu, Jiahao</au><au>Zhang, Qi</au><au>Zhou, Xinping</au><au>Xiong, Qiming</au><au>Qiu, Xiangyun</au><au>Wei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>27</volume><issue>10</issue><spage>4197</spage><epage>4204</epage><pages>4197-4204</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The Co
3
O
4
@rGO derived from metal–organic frameworks (MOFs) were prepared by a simple solvothermal method followed by the heat treatment. In a typical preparation process, the Co-MOF (ZIF-67) acts as the precursor to obtain desirable nano Co
3
O
4
while the reduced graphene oxide (rGO) layer enhances the conductivity. The materials were respectively characterized by XRD, SEM, and then further electrochemical tests. As anode materials for lithium-ion batteries (LIBs), the material of Co
3
O
4
@rGO exhibit overall superb electrochemical properties especially when the rGO proportion is 20%, it displays higher capacity (818.5 mAh g
−1
at 100 mA g
−1
), higher cycling stability (87.3% capacity retention after 100 cycles), and better rate performance. The work may throw some lights on the preparation of other transition metal oxides by structure design with rGO layer for further applications.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04225-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021-10, Vol.27 (10), p.4197-4204 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2574029192 |
source | Springer Link |
subjects | Anodes Chemistry Chemistry and Materials Science Cobalt oxides Condensed Matter Physics Electrochemical analysis Electrochemistry Electrode materials Energy Storage Graphene Heat treatment Lithium Lithium-ion batteries Metal-organic frameworks Nanocomposites Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Transition metal oxides |
title | MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-derived%20Co3O4@rGO%20nanocomposites%20as%20anodes%20for%20high-performance%20lithium-ion%20batteries&rft.jtitle=Ionics&rft.au=Wang,%20Fengyue&rft.date=2021-10-01&rft.volume=27&rft.issue=10&rft.spage=4197&rft.epage=4204&rft.pages=4197-4204&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04225-4&rft_dat=%3Cproquest_cross%3E2574029192%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-42032b4c1c92102296153386a52c5249efcd2448145d437289f42eba063db7123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574029192&rft_id=info:pmid/&rfr_iscdi=true |