Loading…

Study of the New Glass and Glass Ceramic Stoichiometric and Gd3+ -loaded BaO2SiO2 (DSB:Ce) Scintillation Material for Future Calorimetry

In the last forty years, application of crystalline materials in ionizing radiation detectors has played a crucial role in the discovery of matter properties and promoted a continuous progress in the detecting technique. Further concepts of the detectors at HEP experiments will require an unique com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2017-11, Vol.928 (1)
Main Authors: Novotny, R. W., Brinkmann, K.-T., Borisevich, A., Dormenev, V., Korjik, M., Zaunick, H.-G., Zimmermann, S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last forty years, application of crystalline materials in ionizing radiation detectors has played a crucial role in the discovery of matter properties and promoted a continuous progress in the detecting technique. Further concepts of the detectors at HEP experiments will require an unique combination of the material features, particularly in case of collider experiments. Crucially important becomes a minimal level of radiation damage effects under the electromagnetic part of ionizing radiation and energetic hadrons as well: low deterioration of the optical transmission, low level of afterglow and low level of radioluminescence due to radio-nuclides being generated due to secondary nuclear reactions in the detector material itself. A systematic study of the radiation hardness of inorganic optical and scintillation materials have been performed. We concluded that both oxide and fluoride crystals which consist of atoms with atomic number less than 60 will be reasonably survivable in the irradiation environment of future experiments at colliders. In this study we focused on the study of cheap, capable for a mass production glass (BaO*2SiO2) and DSB: Ce glass ceramics obtained from this glass. We also made this glass more heavy by admixing gadolinium oxide into the matrix. Glass with Gd3+ admixture possesses two times larger light yield than pure (BaO*2SiO2) glass and glass ceramics. Both types of the materials were produced as fibre and blocks of larger volume.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/928/1/012034