Loading…
In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter
This work presents an overview of the in-flight engineering data of the Energetic Particle Detector (EPD) instrument suite during its first year of operation. EPD is part of the in-situ scientific payload of the ESA/NASA Solar Orbiter mission which was launched in February 2020. After completion of...
Saved in:
Published in: | Acta astronautica 2021-10, Vol.187, p.12-23 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223 |
container_end_page | 23 |
container_issue | |
container_start_page | 12 |
container_title | Acta astronautica |
container_volume | 187 |
creator | Prieto, Manuel Ravanbakhsh, Ali Gutiérrez, Óscar Montalvo, Aarón Wimmer-Schweingruber, Robert F. Mason, Glenn Cernuda, Ignacio Espinosa Lara, Francisco Carrasco, Alberto Martín, César Seimetz, Lars Kulkarni, Shrinivasrao R. Panitzsch, Lauri Terasa, Jan-Christoph Schuster, Björn Yedla, Mahesh Knierim, Violetta Böttcher, Stephan I. Boden, Sebastian Elftmann, Robert Janitzek, Nils Andrews, Bruce Ho, George R-Polo, Óscar Martínez, Agustín Gómez-Herrero, Raúl Sánchez, Sebastián Rodríguez-Pacheco, Javier |
description | This work presents an overview of the in-flight engineering data of the Energetic Particle Detector (EPD) instrument suite during its first year of operation. EPD is part of the in-situ scientific payload of the ESA/NASA Solar Orbiter mission which was launched in February 2020. After completion of its commissioning phase, Solar Orbiter started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au. Six remote-sensing instruments and four in-situ instruments, including EPD, which is a suite of four individual sensors, make Solar Orbiter the most complete space laboratory flown into the inner heliosphere to date. In-flight engineering data of the different EPD units such as their power consumption and their temperatures are the key indicators to ascertain that the design, manufacturing and qualification of the EPD units on ground and throughout the different life cycles prior to launch were successful. On the other hand, these in-flight housekeeping data also reflect the general status of the units which are exposed to space radiation, stray light and a varying thermal environment. The reliability of the EPD suite was analyzed during the design phase and the in-flight status evaluation confirms this analysis. The first year of flight covers special milestones for the Solar Orbiter mission such as the launch, first perihelion, as well as the first Venus flyby. By evaluating the in-flight engineering data, it is demonstrated that the EPD suite successfully meets its design requirements and also satisfies its scientific objectives in flight.
•In-flight verification is highly needed, since it complements the on-ground test campaigns.•EPD instrument on Solar Orbiter, well designed and working properly after 1 year of operations.•Radiation conditions well below the estimated one. No degradation and no anomalies reported.•Despite the thermal environment is very challenging in Solar Orbiter, EPD thermal design is verified in-flight.•Stray light is an issue for EPD. Stray light avoidance procedure is verified in-flight. |
doi_str_mv | 10.1016/j.actaastro.2021.06.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574459259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576521003040</els_id><sourcerecordid>2574459259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EJRba31BLPSc4tpNsjhHQgoQAaduz5TgzwautDWODxIH_XsOiXjm9h_djNA9j3xtRN6LpTre1ddnalCnWUsimFl0tRH_AVs26HyoplDhkKyEGXbV91x6x45S2oiTkelix16tQ4c4v95k_A3n0zmYfA4_I8z1wCIsPUIyw8BmSXwKfbbYcI737FwFogewdv7NUZAf8HDK4XPyyMkVL8z64GU9vxs3IN3Fnid_S5DPQV_YF7S7Btw89YX9-Xvw-u6yub39dnY3XlVNa5Qob1O3QKI29mqbOqk5Lge0kJsS-tbhWg0I5oXYaAdBZK7HTw1p2YpiclOqE_djvPlB8fIKUzTY-USgnjWx7XcZlO5RUv085iikRoHkg_9fSi2mEeWNttuY_a_PG2ojOFJKlOe6bUJ549kAmOQ_BweypwDBz9J9u_APEF404</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574459259</pqid></control><display><type>article</type><title>In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter</title><source>ScienceDirect Freedom Collection</source><creator>Prieto, Manuel ; Ravanbakhsh, Ali ; Gutiérrez, Óscar ; Montalvo, Aarón ; Wimmer-Schweingruber, Robert F. ; Mason, Glenn ; Cernuda, Ignacio ; Espinosa Lara, Francisco ; Carrasco, Alberto ; Martín, César ; Seimetz, Lars ; Kulkarni, Shrinivasrao R. ; Panitzsch, Lauri ; Terasa, Jan-Christoph ; Schuster, Björn ; Yedla, Mahesh ; Knierim, Violetta ; Böttcher, Stephan I. ; Boden, Sebastian ; Elftmann, Robert ; Janitzek, Nils ; Andrews, Bruce ; Ho, George ; R-Polo, Óscar ; Martínez, Agustín ; Gómez-Herrero, Raúl ; Sánchez, Sebastián ; Rodríguez-Pacheco, Javier</creator><creatorcontrib>Prieto, Manuel ; Ravanbakhsh, Ali ; Gutiérrez, Óscar ; Montalvo, Aarón ; Wimmer-Schweingruber, Robert F. ; Mason, Glenn ; Cernuda, Ignacio ; Espinosa Lara, Francisco ; Carrasco, Alberto ; Martín, César ; Seimetz, Lars ; Kulkarni, Shrinivasrao R. ; Panitzsch, Lauri ; Terasa, Jan-Christoph ; Schuster, Björn ; Yedla, Mahesh ; Knierim, Violetta ; Böttcher, Stephan I. ; Boden, Sebastian ; Elftmann, Robert ; Janitzek, Nils ; Andrews, Bruce ; Ho, George ; R-Polo, Óscar ; Martínez, Agustín ; Gómez-Herrero, Raúl ; Sánchez, Sebastián ; Rodríguez-Pacheco, Javier</creatorcontrib><description>This work presents an overview of the in-flight engineering data of the Energetic Particle Detector (EPD) instrument suite during its first year of operation. EPD is part of the in-situ scientific payload of the ESA/NASA Solar Orbiter mission which was launched in February 2020. After completion of its commissioning phase, Solar Orbiter started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au. Six remote-sensing instruments and four in-situ instruments, including EPD, which is a suite of four individual sensors, make Solar Orbiter the most complete space laboratory flown into the inner heliosphere to date. In-flight engineering data of the different EPD units such as their power consumption and their temperatures are the key indicators to ascertain that the design, manufacturing and qualification of the EPD units on ground and throughout the different life cycles prior to launch were successful. On the other hand, these in-flight housekeeping data also reflect the general status of the units which are exposed to space radiation, stray light and a varying thermal environment. The reliability of the EPD suite was analyzed during the design phase and the in-flight status evaluation confirms this analysis. The first year of flight covers special milestones for the Solar Orbiter mission such as the launch, first perihelion, as well as the first Venus flyby. By evaluating the in-flight engineering data, it is demonstrated that the EPD suite successfully meets its design requirements and also satisfies its scientific objectives in flight.
•In-flight verification is highly needed, since it complements the on-ground test campaigns.•EPD instrument on Solar Orbiter, well designed and working properly after 1 year of operations.•Radiation conditions well below the estimated one. No degradation and no anomalies reported.•Despite the thermal environment is very challenging in Solar Orbiter, EPD thermal design is verified in-flight.•Stray light is an issue for EPD. Stray light avoidance procedure is verified in-flight.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2021.06.007</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Design engineering ; Design verification ; Energetic particles ; Engineering ; Extraterrestrial radiation ; Flyby missions ; Heliosphere ; Housekeeping data ; Life cycles ; Perihelions ; Power consumption ; Radiation ; Radiation counters ; Radiation dose ; Reliability analysis ; Remote sensing ; Solar Orbiter (ESA) ; Solar orbits ; Space laboratories ; Thermal design ; Thermal environments</subject><ispartof>Acta astronautica, 2021-10, Vol.187, p.12-23</ispartof><rights>2021 IAA</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223</citedby><cites>FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223</cites><orcidid>0000-0001-8432-5379 ; 0000-0002-6729-7932 ; 0000-0002-5600-9253 ; 0000-0002-6896-5226 ; 0000-0002-6589-1946 ; 0000-0003-2169-9618 ; 0000-0002-7893-4247 ; 0000-0003-4143-3200 ; 0000-0002-5705-9236 ; 0000-0003-1093-2066 ; 0000-0002-7388-173X ; 0000-0003-3050-3445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Prieto, Manuel</creatorcontrib><creatorcontrib>Ravanbakhsh, Ali</creatorcontrib><creatorcontrib>Gutiérrez, Óscar</creatorcontrib><creatorcontrib>Montalvo, Aarón</creatorcontrib><creatorcontrib>Wimmer-Schweingruber, Robert F.</creatorcontrib><creatorcontrib>Mason, Glenn</creatorcontrib><creatorcontrib>Cernuda, Ignacio</creatorcontrib><creatorcontrib>Espinosa Lara, Francisco</creatorcontrib><creatorcontrib>Carrasco, Alberto</creatorcontrib><creatorcontrib>Martín, César</creatorcontrib><creatorcontrib>Seimetz, Lars</creatorcontrib><creatorcontrib>Kulkarni, Shrinivasrao R.</creatorcontrib><creatorcontrib>Panitzsch, Lauri</creatorcontrib><creatorcontrib>Terasa, Jan-Christoph</creatorcontrib><creatorcontrib>Schuster, Björn</creatorcontrib><creatorcontrib>Yedla, Mahesh</creatorcontrib><creatorcontrib>Knierim, Violetta</creatorcontrib><creatorcontrib>Böttcher, Stephan I.</creatorcontrib><creatorcontrib>Boden, Sebastian</creatorcontrib><creatorcontrib>Elftmann, Robert</creatorcontrib><creatorcontrib>Janitzek, Nils</creatorcontrib><creatorcontrib>Andrews, Bruce</creatorcontrib><creatorcontrib>Ho, George</creatorcontrib><creatorcontrib>R-Polo, Óscar</creatorcontrib><creatorcontrib>Martínez, Agustín</creatorcontrib><creatorcontrib>Gómez-Herrero, Raúl</creatorcontrib><creatorcontrib>Sánchez, Sebastián</creatorcontrib><creatorcontrib>Rodríguez-Pacheco, Javier</creatorcontrib><title>In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter</title><title>Acta astronautica</title><description>This work presents an overview of the in-flight engineering data of the Energetic Particle Detector (EPD) instrument suite during its first year of operation. EPD is part of the in-situ scientific payload of the ESA/NASA Solar Orbiter mission which was launched in February 2020. After completion of its commissioning phase, Solar Orbiter started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au. Six remote-sensing instruments and four in-situ instruments, including EPD, which is a suite of four individual sensors, make Solar Orbiter the most complete space laboratory flown into the inner heliosphere to date. In-flight engineering data of the different EPD units such as their power consumption and their temperatures are the key indicators to ascertain that the design, manufacturing and qualification of the EPD units on ground and throughout the different life cycles prior to launch were successful. On the other hand, these in-flight housekeeping data also reflect the general status of the units which are exposed to space radiation, stray light and a varying thermal environment. The reliability of the EPD suite was analyzed during the design phase and the in-flight status evaluation confirms this analysis. The first year of flight covers special milestones for the Solar Orbiter mission such as the launch, first perihelion, as well as the first Venus flyby. By evaluating the in-flight engineering data, it is demonstrated that the EPD suite successfully meets its design requirements and also satisfies its scientific objectives in flight.
•In-flight verification is highly needed, since it complements the on-ground test campaigns.•EPD instrument on Solar Orbiter, well designed and working properly after 1 year of operations.•Radiation conditions well below the estimated one. No degradation and no anomalies reported.•Despite the thermal environment is very challenging in Solar Orbiter, EPD thermal design is verified in-flight.•Stray light is an issue for EPD. Stray light avoidance procedure is verified in-flight.</description><subject>Design engineering</subject><subject>Design verification</subject><subject>Energetic particles</subject><subject>Engineering</subject><subject>Extraterrestrial radiation</subject><subject>Flyby missions</subject><subject>Heliosphere</subject><subject>Housekeeping data</subject><subject>Life cycles</subject><subject>Perihelions</subject><subject>Power consumption</subject><subject>Radiation</subject><subject>Radiation counters</subject><subject>Radiation dose</subject><subject>Reliability analysis</subject><subject>Remote sensing</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Space laboratories</subject><subject>Thermal design</subject><subject>Thermal environments</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1EJRba31BLPSc4tpNsjhHQgoQAaduz5TgzwautDWODxIH_XsOiXjm9h_djNA9j3xtRN6LpTre1ddnalCnWUsimFl0tRH_AVs26HyoplDhkKyEGXbV91x6x45S2oiTkelix16tQ4c4v95k_A3n0zmYfA4_I8z1wCIsPUIyw8BmSXwKfbbYcI737FwFogewdv7NUZAf8HDK4XPyyMkVL8z64GU9vxs3IN3Fnid_S5DPQV_YF7S7Btw89YX9-Xvw-u6yub39dnY3XlVNa5Qob1O3QKI29mqbOqk5Lge0kJsS-tbhWg0I5oXYaAdBZK7HTw1p2YpiclOqE_djvPlB8fIKUzTY-USgnjWx7XcZlO5RUv085iikRoHkg_9fSi2mEeWNttuY_a_PG2ojOFJKlOe6bUJ549kAmOQ_BweypwDBz9J9u_APEF404</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Prieto, Manuel</creator><creator>Ravanbakhsh, Ali</creator><creator>Gutiérrez, Óscar</creator><creator>Montalvo, Aarón</creator><creator>Wimmer-Schweingruber, Robert F.</creator><creator>Mason, Glenn</creator><creator>Cernuda, Ignacio</creator><creator>Espinosa Lara, Francisco</creator><creator>Carrasco, Alberto</creator><creator>Martín, César</creator><creator>Seimetz, Lars</creator><creator>Kulkarni, Shrinivasrao R.</creator><creator>Panitzsch, Lauri</creator><creator>Terasa, Jan-Christoph</creator><creator>Schuster, Björn</creator><creator>Yedla, Mahesh</creator><creator>Knierim, Violetta</creator><creator>Böttcher, Stephan I.</creator><creator>Boden, Sebastian</creator><creator>Elftmann, Robert</creator><creator>Janitzek, Nils</creator><creator>Andrews, Bruce</creator><creator>Ho, George</creator><creator>R-Polo, Óscar</creator><creator>Martínez, Agustín</creator><creator>Gómez-Herrero, Raúl</creator><creator>Sánchez, Sebastián</creator><creator>Rodríguez-Pacheco, Javier</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8432-5379</orcidid><orcidid>https://orcid.org/0000-0002-6729-7932</orcidid><orcidid>https://orcid.org/0000-0002-5600-9253</orcidid><orcidid>https://orcid.org/0000-0002-6896-5226</orcidid><orcidid>https://orcid.org/0000-0002-6589-1946</orcidid><orcidid>https://orcid.org/0000-0003-2169-9618</orcidid><orcidid>https://orcid.org/0000-0002-7893-4247</orcidid><orcidid>https://orcid.org/0000-0003-4143-3200</orcidid><orcidid>https://orcid.org/0000-0002-5705-9236</orcidid><orcidid>https://orcid.org/0000-0003-1093-2066</orcidid><orcidid>https://orcid.org/0000-0002-7388-173X</orcidid><orcidid>https://orcid.org/0000-0003-3050-3445</orcidid></search><sort><creationdate>202110</creationdate><title>In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter</title><author>Prieto, Manuel ; Ravanbakhsh, Ali ; Gutiérrez, Óscar ; Montalvo, Aarón ; Wimmer-Schweingruber, Robert F. ; Mason, Glenn ; Cernuda, Ignacio ; Espinosa Lara, Francisco ; Carrasco, Alberto ; Martín, César ; Seimetz, Lars ; Kulkarni, Shrinivasrao R. ; Panitzsch, Lauri ; Terasa, Jan-Christoph ; Schuster, Björn ; Yedla, Mahesh ; Knierim, Violetta ; Böttcher, Stephan I. ; Boden, Sebastian ; Elftmann, Robert ; Janitzek, Nils ; Andrews, Bruce ; Ho, George ; R-Polo, Óscar ; Martínez, Agustín ; Gómez-Herrero, Raúl ; Sánchez, Sebastián ; Rodríguez-Pacheco, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Design engineering</topic><topic>Design verification</topic><topic>Energetic particles</topic><topic>Engineering</topic><topic>Extraterrestrial radiation</topic><topic>Flyby missions</topic><topic>Heliosphere</topic><topic>Housekeeping data</topic><topic>Life cycles</topic><topic>Perihelions</topic><topic>Power consumption</topic><topic>Radiation</topic><topic>Radiation counters</topic><topic>Radiation dose</topic><topic>Reliability analysis</topic><topic>Remote sensing</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Space laboratories</topic><topic>Thermal design</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prieto, Manuel</creatorcontrib><creatorcontrib>Ravanbakhsh, Ali</creatorcontrib><creatorcontrib>Gutiérrez, Óscar</creatorcontrib><creatorcontrib>Montalvo, Aarón</creatorcontrib><creatorcontrib>Wimmer-Schweingruber, Robert F.</creatorcontrib><creatorcontrib>Mason, Glenn</creatorcontrib><creatorcontrib>Cernuda, Ignacio</creatorcontrib><creatorcontrib>Espinosa Lara, Francisco</creatorcontrib><creatorcontrib>Carrasco, Alberto</creatorcontrib><creatorcontrib>Martín, César</creatorcontrib><creatorcontrib>Seimetz, Lars</creatorcontrib><creatorcontrib>Kulkarni, Shrinivasrao R.</creatorcontrib><creatorcontrib>Panitzsch, Lauri</creatorcontrib><creatorcontrib>Terasa, Jan-Christoph</creatorcontrib><creatorcontrib>Schuster, Björn</creatorcontrib><creatorcontrib>Yedla, Mahesh</creatorcontrib><creatorcontrib>Knierim, Violetta</creatorcontrib><creatorcontrib>Böttcher, Stephan I.</creatorcontrib><creatorcontrib>Boden, Sebastian</creatorcontrib><creatorcontrib>Elftmann, Robert</creatorcontrib><creatorcontrib>Janitzek, Nils</creatorcontrib><creatorcontrib>Andrews, Bruce</creatorcontrib><creatorcontrib>Ho, George</creatorcontrib><creatorcontrib>R-Polo, Óscar</creatorcontrib><creatorcontrib>Martínez, Agustín</creatorcontrib><creatorcontrib>Gómez-Herrero, Raúl</creatorcontrib><creatorcontrib>Sánchez, Sebastián</creatorcontrib><creatorcontrib>Rodríguez-Pacheco, Javier</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prieto, Manuel</au><au>Ravanbakhsh, Ali</au><au>Gutiérrez, Óscar</au><au>Montalvo, Aarón</au><au>Wimmer-Schweingruber, Robert F.</au><au>Mason, Glenn</au><au>Cernuda, Ignacio</au><au>Espinosa Lara, Francisco</au><au>Carrasco, Alberto</au><au>Martín, César</au><au>Seimetz, Lars</au><au>Kulkarni, Shrinivasrao R.</au><au>Panitzsch, Lauri</au><au>Terasa, Jan-Christoph</au><au>Schuster, Björn</au><au>Yedla, Mahesh</au><au>Knierim, Violetta</au><au>Böttcher, Stephan I.</au><au>Boden, Sebastian</au><au>Elftmann, Robert</au><au>Janitzek, Nils</au><au>Andrews, Bruce</au><au>Ho, George</au><au>R-Polo, Óscar</au><au>Martínez, Agustín</au><au>Gómez-Herrero, Raúl</au><au>Sánchez, Sebastián</au><au>Rodríguez-Pacheco, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter</atitle><jtitle>Acta astronautica</jtitle><date>2021-10</date><risdate>2021</risdate><volume>187</volume><spage>12</spage><epage>23</epage><pages>12-23</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>This work presents an overview of the in-flight engineering data of the Energetic Particle Detector (EPD) instrument suite during its first year of operation. EPD is part of the in-situ scientific payload of the ESA/NASA Solar Orbiter mission which was launched in February 2020. After completion of its commissioning phase, Solar Orbiter started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au. Six remote-sensing instruments and four in-situ instruments, including EPD, which is a suite of four individual sensors, make Solar Orbiter the most complete space laboratory flown into the inner heliosphere to date. In-flight engineering data of the different EPD units such as their power consumption and their temperatures are the key indicators to ascertain that the design, manufacturing and qualification of the EPD units on ground and throughout the different life cycles prior to launch were successful. On the other hand, these in-flight housekeeping data also reflect the general status of the units which are exposed to space radiation, stray light and a varying thermal environment. The reliability of the EPD suite was analyzed during the design phase and the in-flight status evaluation confirms this analysis. The first year of flight covers special milestones for the Solar Orbiter mission such as the launch, first perihelion, as well as the first Venus flyby. By evaluating the in-flight engineering data, it is demonstrated that the EPD suite successfully meets its design requirements and also satisfies its scientific objectives in flight.
•In-flight verification is highly needed, since it complements the on-ground test campaigns.•EPD instrument on Solar Orbiter, well designed and working properly after 1 year of operations.•Radiation conditions well below the estimated one. No degradation and no anomalies reported.•Despite the thermal environment is very challenging in Solar Orbiter, EPD thermal design is verified in-flight.•Stray light is an issue for EPD. Stray light avoidance procedure is verified in-flight.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2021.06.007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8432-5379</orcidid><orcidid>https://orcid.org/0000-0002-6729-7932</orcidid><orcidid>https://orcid.org/0000-0002-5600-9253</orcidid><orcidid>https://orcid.org/0000-0002-6896-5226</orcidid><orcidid>https://orcid.org/0000-0002-6589-1946</orcidid><orcidid>https://orcid.org/0000-0003-2169-9618</orcidid><orcidid>https://orcid.org/0000-0002-7893-4247</orcidid><orcidid>https://orcid.org/0000-0003-4143-3200</orcidid><orcidid>https://orcid.org/0000-0002-5705-9236</orcidid><orcidid>https://orcid.org/0000-0003-1093-2066</orcidid><orcidid>https://orcid.org/0000-0002-7388-173X</orcidid><orcidid>https://orcid.org/0000-0003-3050-3445</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2021-10, Vol.187, p.12-23 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2574459259 |
source | ScienceDirect Freedom Collection |
subjects | Design engineering Design verification Energetic particles Engineering Extraterrestrial radiation Flyby missions Heliosphere Housekeeping data Life cycles Perihelions Power consumption Radiation Radiation counters Radiation dose Reliability analysis Remote sensing Solar Orbiter (ESA) Solar orbits Space laboratories Thermal design Thermal environments |
title | In-flight verification of the engineering design data for the Energetic Particle Detector on board the ESA/NASA Solar Orbiter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-flight%20verification%20of%20the%20engineering%20design%20data%20for%20the%20Energetic%20Particle%20Detector%20on%20board%20the%20ESA/NASA%20Solar%20Orbiter&rft.jtitle=Acta%20astronautica&rft.au=Prieto,%20Manuel&rft.date=2021-10&rft.volume=187&rft.spage=12&rft.epage=23&rft.pages=12-23&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2021.06.007&rft_dat=%3Cproquest_cross%3E2574459259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-f1f459134f73bb6a36420f5b0bff75af8393f2bf4c4feefcaa2f64982609bc223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574459259&rft_id=info:pmid/&rfr_iscdi=true |