Loading…

Experimental and theoretical studies of Sub-THz detection using strained-Si FETs

We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2017-10, Vol.906 (1), p.12003
Main Authors: Delgado Notario, J.A., Javadi, E., Clericò, V., Fobelets, K., Otsuji, T., Diez, E., Velázquez-Pérez, J.E., Meziani, Y.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic response was obtained when the FET gate was biased at a value close to the threshold voltage. Simulations based on a bi-dimensional hydrodynamic model for the charge transport coupled to a Poisson equation solver were performed by using Synopsys TCAD. A charge boundary condition for the floating drain contact was implemented to obtain the photovoltaic response. Results from numerical simulations are in agreement with experimental ones. To understand the coupling between terahertz radiation and devices, the devices were rotated at different angles under excitation at both sub-terahertz frequencies and their response measured. Both NEP (Noise Equivalent Power) and Responsivity were calculated from measurements. To demonstrate their utility, devices were used as sensors in a terahertz imaging system for inspection of hidden objects at both frequencies.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/906/1/012003