Loading…

Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids

High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimati...

Full description

Saved in:
Bibliographic Details
Published in:Polar biology 2020-08, Vol.43 (8), p.979-994
Main Authors: Wilson, Robert E., Sonsthagen, Sarah A., Smé, Noel, Gharrett, A. J., Majewski, Andrew R., Wedemeyer, Kate, Nelson, R. John, Talbot, Sandra L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3
cites cdi_FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3
container_end_page 994
container_issue 8
container_start_page 979
container_title Polar biology
container_volume 43
creator Wilson, Robert E.
Sonsthagen, Sarah A.
Smé, Noel
Gharrett, A. J.
Majewski, Andrew R.
Wedemeyer, Kate
Nelson, R. John
Talbot, Sandra L.
description High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimation and adaptation to differing temperature regimes in marine ectotherms. As oceans continue to warm, there is growing need to understand the ability of organisms to respond to changing environmental conditions given evidence that some species, in particular cold-water species, may already be experiencing difficulties. To assess how Arctic gadids in Alaska have responded to differential thermal preferences in the past and how regions are interconnected, we sequenced complete mitochondrial genomes for four Arctic gadids to determine the distribution of mitochondrial diversity and population-level structure as well as to detect signatures of selection acting on the mitochondrial genome. We found little population-level structure within all four species with the clear exception of Gulf of Alaska saffron cod ( Eleginus gracilis ). Northern localities exhibited higher levels of genetic diversity and primarily northern lineages were observed within polar cod ( Boreogadus saida ) and saffron cod, likely reflecting asymmetrical dispersal and potentially admixture of distinct lineages via ocean currents. The main evolutionary force shaping the evolution of the mitogenome appears to be purifying selection, but we also identified potential positive selection of candidate amino acid replacements primarily in complex I (ND genes) in polar cod. The high levels of mitochondrial diversity observed in our study and large population size may provide this species with the ability to respond evolutionarily (i.e. long-term) to a changing environment.
doi_str_mv 10.1007/s00300-020-02703-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2574554291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715537339</galeid><sourcerecordid>A715537339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3</originalsourceid><addsrcrecordid>eNp9kU1rXCEUhqU00GnSP9CV0E2zuMnx634spyFtAinZpGtx9HhruKNTvZOSfx9nbiC7ICIcn-cc8SXkK4MLBtBdFgAB0AA_7A5Eoz6QFZOCNxxU-5GsoOO8kdDCJ_K5lEcA1rVyWJGn32FO9m-KLgcz0RFj2iJ14QlzCfMzNdHRXdrtJzOHFOm20kcm2EKTr1eTydQmR7__SBnTaNy-0GKCM-dHd53tHCx1_3GaQhxpBVJw5YyceDMV_PJ6npI_P68frm6au_tft1fru8aKvp0blCiYB66st2bTCu5tvxFiwwbPe6mUA8kGYNwjKNMjODyUe8FMP4Ct8in5tvTd5fRvj2XWj2mfYx2puepqB8kH9i4lhWwZ572q1MVCjWZCHaJPcza2Lof1O1JEH2p93TGlRCfEUAW-CDanUjJ6vctha_KzZqAPseklNl1j08fY9GGKWKRS4ThifnvLO9YL-r6aRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434612285</pqid></control><display><type>article</type><title>Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids</title><source>Springer Link</source><creator>Wilson, Robert E. ; Sonsthagen, Sarah A. ; Smé, Noel ; Gharrett, A. J. ; Majewski, Andrew R. ; Wedemeyer, Kate ; Nelson, R. John ; Talbot, Sandra L.</creator><creatorcontrib>Wilson, Robert E. ; Sonsthagen, Sarah A. ; Smé, Noel ; Gharrett, A. J. ; Majewski, Andrew R. ; Wedemeyer, Kate ; Nelson, R. John ; Talbot, Sandra L.</creatorcontrib><description>High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimation and adaptation to differing temperature regimes in marine ectotherms. As oceans continue to warm, there is growing need to understand the ability of organisms to respond to changing environmental conditions given evidence that some species, in particular cold-water species, may already be experiencing difficulties. To assess how Arctic gadids in Alaska have responded to differential thermal preferences in the past and how regions are interconnected, we sequenced complete mitochondrial genomes for four Arctic gadids to determine the distribution of mitochondrial diversity and population-level structure as well as to detect signatures of selection acting on the mitochondrial genome. We found little population-level structure within all four species with the clear exception of Gulf of Alaska saffron cod ( Eleginus gracilis ). Northern localities exhibited higher levels of genetic diversity and primarily northern lineages were observed within polar cod ( Boreogadus saida ) and saffron cod, likely reflecting asymmetrical dispersal and potentially admixture of distinct lineages via ocean currents. The main evolutionary force shaping the evolution of the mitogenome appears to be purifying selection, but we also identified potential positive selection of candidate amino acid replacements primarily in complex I (ND genes) in polar cod. The high levels of mitochondrial diversity observed in our study and large population size may provide this species with the ability to respond evolutionarily (i.e. long-term) to a changing environment.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-020-02703-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Amino acids ; Biological diversity ; Biomedical and Life Sciences ; Boreogadus saida ; Changing environments ; Differential thermal analysis ; Dispersal ; Ecology ; Electron transport chain ; Eleginus ; Energy balance ; Energy metabolism ; Environmental changes ; Environmental conditions ; Evolution ; Fish ; Fishes ; Genes ; Genetic diversity ; Genetic research ; Genetic variation ; Genomes ; Genomics ; Life Sciences ; Metabolism ; Microbiology ; Mitochondria ; Ocean currents ; Oceanography ; Oceans ; Original Paper ; Plant Sciences ; Population ; Population number ; Population studies ; Positive selection ; Species ; Temperature tolerance ; Thermal stress ; Water temperature ; Zoology</subject><ispartof>Polar biology, 2020-08, Vol.43 (8), p.979-994</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3</citedby><cites>FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3</cites><orcidid>0000-0001-6078-8889 ; 0000-0002-7945-5918 ; 0000-0003-1800-0183 ; 0000-0002-3312-7214 ; 0000-0001-6215-5874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wilson, Robert E.</creatorcontrib><creatorcontrib>Sonsthagen, Sarah A.</creatorcontrib><creatorcontrib>Smé, Noel</creatorcontrib><creatorcontrib>Gharrett, A. J.</creatorcontrib><creatorcontrib>Majewski, Andrew R.</creatorcontrib><creatorcontrib>Wedemeyer, Kate</creatorcontrib><creatorcontrib>Nelson, R. John</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><title>Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimation and adaptation to differing temperature regimes in marine ectotherms. As oceans continue to warm, there is growing need to understand the ability of organisms to respond to changing environmental conditions given evidence that some species, in particular cold-water species, may already be experiencing difficulties. To assess how Arctic gadids in Alaska have responded to differential thermal preferences in the past and how regions are interconnected, we sequenced complete mitochondrial genomes for four Arctic gadids to determine the distribution of mitochondrial diversity and population-level structure as well as to detect signatures of selection acting on the mitochondrial genome. We found little population-level structure within all four species with the clear exception of Gulf of Alaska saffron cod ( Eleginus gracilis ). Northern localities exhibited higher levels of genetic diversity and primarily northern lineages were observed within polar cod ( Boreogadus saida ) and saffron cod, likely reflecting asymmetrical dispersal and potentially admixture of distinct lineages via ocean currents. The main evolutionary force shaping the evolution of the mitogenome appears to be purifying selection, but we also identified potential positive selection of candidate amino acid replacements primarily in complex I (ND genes) in polar cod. The high levels of mitochondrial diversity observed in our study and large population size may provide this species with the ability to respond evolutionarily (i.e. long-term) to a changing environment.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Amino acids</subject><subject>Biological diversity</subject><subject>Biomedical and Life Sciences</subject><subject>Boreogadus saida</subject><subject>Changing environments</subject><subject>Differential thermal analysis</subject><subject>Dispersal</subject><subject>Ecology</subject><subject>Electron transport chain</subject><subject>Eleginus</subject><subject>Energy balance</subject><subject>Energy metabolism</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Evolution</subject><subject>Fish</subject><subject>Fishes</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic research</subject><subject>Genetic variation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Ocean currents</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Plant Sciences</subject><subject>Population</subject><subject>Population number</subject><subject>Population studies</subject><subject>Positive selection</subject><subject>Species</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>Water temperature</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rXCEUhqU00GnSP9CV0E2zuMnx634spyFtAinZpGtx9HhruKNTvZOSfx9nbiC7ICIcn-cc8SXkK4MLBtBdFgAB0AA_7A5Eoz6QFZOCNxxU-5GsoOO8kdDCJ_K5lEcA1rVyWJGn32FO9m-KLgcz0RFj2iJ14QlzCfMzNdHRXdrtJzOHFOm20kcm2EKTr1eTydQmR7__SBnTaNy-0GKCM-dHd53tHCx1_3GaQhxpBVJw5YyceDMV_PJ6npI_P68frm6au_tft1fru8aKvp0blCiYB66st2bTCu5tvxFiwwbPe6mUA8kGYNwjKNMjODyUe8FMP4Ct8in5tvTd5fRvj2XWj2mfYx2puepqB8kH9i4lhWwZ572q1MVCjWZCHaJPcza2Lof1O1JEH2p93TGlRCfEUAW-CDanUjJ6vctha_KzZqAPseklNl1j08fY9GGKWKRS4ThifnvLO9YL-r6aRA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wilson, Robert E.</creator><creator>Sonsthagen, Sarah A.</creator><creator>Smé, Noel</creator><creator>Gharrett, A. J.</creator><creator>Majewski, Andrew R.</creator><creator>Wedemeyer, Kate</creator><creator>Nelson, R. John</creator><creator>Talbot, Sandra L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6078-8889</orcidid><orcidid>https://orcid.org/0000-0002-7945-5918</orcidid><orcidid>https://orcid.org/0000-0003-1800-0183</orcidid><orcidid>https://orcid.org/0000-0002-3312-7214</orcidid><orcidid>https://orcid.org/0000-0001-6215-5874</orcidid></search><sort><creationdate>20200801</creationdate><title>Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids</title><author>Wilson, Robert E. ; Sonsthagen, Sarah A. ; Smé, Noel ; Gharrett, A. J. ; Majewski, Andrew R. ; Wedemeyer, Kate ; Nelson, R. John ; Talbot, Sandra L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Amino acids</topic><topic>Biological diversity</topic><topic>Biomedical and Life Sciences</topic><topic>Boreogadus saida</topic><topic>Changing environments</topic><topic>Differential thermal analysis</topic><topic>Dispersal</topic><topic>Ecology</topic><topic>Electron transport chain</topic><topic>Eleginus</topic><topic>Energy balance</topic><topic>Energy metabolism</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Evolution</topic><topic>Fish</topic><topic>Fishes</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic research</topic><topic>Genetic variation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Ocean currents</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Plant Sciences</topic><topic>Population</topic><topic>Population number</topic><topic>Population studies</topic><topic>Positive selection</topic><topic>Species</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>Water temperature</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Robert E.</creatorcontrib><creatorcontrib>Sonsthagen, Sarah A.</creatorcontrib><creatorcontrib>Smé, Noel</creatorcontrib><creatorcontrib>Gharrett, A. J.</creatorcontrib><creatorcontrib>Majewski, Andrew R.</creatorcontrib><creatorcontrib>Wedemeyer, Kate</creatorcontrib><creatorcontrib>Nelson, R. John</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Robert E.</au><au>Sonsthagen, Sarah A.</au><au>Smé, Noel</au><au>Gharrett, A. J.</au><au>Majewski, Andrew R.</au><au>Wedemeyer, Kate</au><au>Nelson, R. John</au><au>Talbot, Sandra L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>43</volume><issue>8</issue><spage>979</spage><epage>994</epage><pages>979-994</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><abstract>High-latitude fish typically exhibit a narrow thermal tolerance window, which may pose challenges when coping with temperatures that shift outside of a species’ range of tolerance. Due to its role in aerobic metabolism and energy balance, the mitochondrial genome is likely critical for the acclimation and adaptation to differing temperature regimes in marine ectotherms. As oceans continue to warm, there is growing need to understand the ability of organisms to respond to changing environmental conditions given evidence that some species, in particular cold-water species, may already be experiencing difficulties. To assess how Arctic gadids in Alaska have responded to differential thermal preferences in the past and how regions are interconnected, we sequenced complete mitochondrial genomes for four Arctic gadids to determine the distribution of mitochondrial diversity and population-level structure as well as to detect signatures of selection acting on the mitochondrial genome. We found little population-level structure within all four species with the clear exception of Gulf of Alaska saffron cod ( Eleginus gracilis ). Northern localities exhibited higher levels of genetic diversity and primarily northern lineages were observed within polar cod ( Boreogadus saida ) and saffron cod, likely reflecting asymmetrical dispersal and potentially admixture of distinct lineages via ocean currents. The main evolutionary force shaping the evolution of the mitogenome appears to be purifying selection, but we also identified potential positive selection of candidate amino acid replacements primarily in complex I (ND genes) in polar cod. The high levels of mitochondrial diversity observed in our study and large population size may provide this species with the ability to respond evolutionarily (i.e. long-term) to a changing environment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-020-02703-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6078-8889</orcidid><orcidid>https://orcid.org/0000-0002-7945-5918</orcidid><orcidid>https://orcid.org/0000-0003-1800-0183</orcidid><orcidid>https://orcid.org/0000-0002-3312-7214</orcidid><orcidid>https://orcid.org/0000-0001-6215-5874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0722-4060
ispartof Polar biology, 2020-08, Vol.43 (8), p.979-994
issn 0722-4060
1432-2056
language eng
recordid cdi_proquest_journals_2574554291
source Springer Link
subjects Acclimation
Acclimatization
Adaptation
Amino acids
Biological diversity
Biomedical and Life Sciences
Boreogadus saida
Changing environments
Differential thermal analysis
Dispersal
Ecology
Electron transport chain
Eleginus
Energy balance
Energy metabolism
Environmental changes
Environmental conditions
Evolution
Fish
Fishes
Genes
Genetic diversity
Genetic research
Genetic variation
Genomes
Genomics
Life Sciences
Metabolism
Microbiology
Mitochondria
Ocean currents
Oceanography
Oceans
Original Paper
Plant Sciences
Population
Population number
Population studies
Positive selection
Species
Temperature tolerance
Thermal stress
Water temperature
Zoology
title Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20genome%20diversity%20and%20population%20mitogenomics%20of%20polar%20cod%20(Boreogadus%20saida)%20and%20Arctic%20dwelling%20gadoids&rft.jtitle=Polar%20biology&rft.au=Wilson,%20Robert%20E.&rft.date=2020-08-01&rft.volume=43&rft.issue=8&rft.spage=979&rft.epage=994&rft.pages=979-994&rft.issn=0722-4060&rft.eissn=1432-2056&rft_id=info:doi/10.1007/s00300-020-02703-5&rft_dat=%3Cgale_proqu%3EA715537339%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-e4e31f025cfcab632fc8b33b19f28455d0419012fe05a8e0de2845831a890c4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434612285&rft_id=info:pmid/&rft_galeid=A715537339&rfr_iscdi=true